Question

5. How heavy are the backpacks carried by college students? To estimate the weight of backpacks...

5. How heavy are the backpacks carried by college students? To estimate the weight of
backpacks carried by college students, a researcher weighs the backpacks from a random
sample of 58 college students. The average backpack weight ends up being 15.7 pounds,
with a standard deviation of 2.4 pounds. If you use this data to construct a 90% confidence
interval, what will the margin of error be for this interval? Try not to do a lot of
intermediate rounding until you get to the end of your calculations, and choose the answer
below that is closest to what you obtain.

A. 1.65 pounds
B. 3.39 pounds
C. 0.52 pounds
D. 0.07 pounds
E. 0.22 pounds

6. A 95% confidence interval is constructed in order to estimate the average test score for a
population of engineering students. The interval ends up between from 75.42 to 86.58.
Which of the following could be a 99% confidence interval for the same data?

I. 80.21 to 81.79
II. 73.67 to 88.33
III. 78.71 to 83.29

A. I only
B. II only
C. III only
D. I and II
E. II and III

7. An educator is interested in the study habits of students at Degrassi Junior High School. She
is able to survey a random sample of 128 students about their study habits. It is observed
that the average amount of time these students spend working on homework per night is 38
minutes, with a standard deviation of 4.8 minutes. When a 95% confidence interval is
constructed, the interval ends up being from 37.17 minutes to 38.83 minutes. To interpret
this interval, the educator says “We are 95% confident that the mean amount of time all
students at Degrassi Junior High School spend on homework per night is between 37.17
minutes and 38.83 minutes.” What is wrong with this interpretation?

A. Nothing is wrong.
B. The educator must have made a mistake in her calculations because the numbers
37.17 and 38.83 are not correct.
C. The educator should have constructed a 99% confidence interval rather than a 95%
confidence interval.
D. The educator should be stating that she is 95% confident the mean of the sample of
128 students, not the population mean, will be within the computed interval.
E. The educator should be using a sample size of at least 200 students if her goal is to
construct a confidence interval.

8. What proportion of college students listen to podcasts? To estimate this, Jill gathers data
from a random sample of college students and constructs a 95% confidence interval. The
interval is from 0.44 to 0.62. From this information, we can conclude the margin of error is

A. 0.05.
B. 0.09.
C. 0.18.
D. 1.96.
E. It’s impossible to answer this question without more information.
9. Which one of the following statements is false?

A. Confidence intervals are constructed with the goal of estimating an unknown
population parameter.
B. When constructing a confidence interval, the value added to and subtracted from the
sample statistic is called the margin of error.
C. The width of a confidence interval is affected by the size of the sample.
D. If you construct a confidence interval for a population proportion and the interval
ends up being from 0.13 to 0.24, this means the population proportion is definitely
between 0.13 and 0.24.
E. Given the same sample of data, a 99% confidence interval will be wider than a 90%
confidence interval.


10. Which one of the following statements is true?

A. If you construct a confidence interval to estimate a population mean, the margin of error
will get larger as the size of the sample mean increases.
B. The margin of error is affected by the size of the population.
C. The sample statistic (either a mean or a proportion) used to construct the confidence
interval will always be right in the center of the confidence interval.
D. The margin of error takes into account all possible things (e.g., both sampling and
nonsampling errors) that can go wrong when sampling from a population.
E. If you construct a confidence interval to estimate a population mean, the margin of error
will get smaller as the sample standard deviation gets larger.

Homework Answers

Answer #1

6. Option II. 73.67 to 88.33 i.e. B. II only

Note: length of 99% CI is larger than length of 95% CI.

7.

One-Sample T

N Mean StDev SE Mean 95% CI
128 38.000 4.800 0.424 (37.160, 38.840)

Option  A. Nothing is wrong.

8.

Margin of error=(0.62-0.44)/2=0.09

Option: B. 0.09.

9. Option: D. If you construct a confidence interval for a population proportion and the interval

ends up being from 0.13 to 0.24, this means the population proportion is definitely

between 0.13 and 0.24.

10. Option: C. The sample statistic (either a mean or a proportion) used to construct the confidence

interval will always be right in the center of the confidence interval.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A college registrar wants to estimate the proportion of all students at the college who are...
A college registrar wants to estimate the proportion of all students at the college who are dissatisfied with the online registration procedure. What is the most conservative estimate of the minimum sample size that would limit the margin of error to be within 0.045 of the population proportion for a 95% confidence interval?
4. Find the margin of error E. In a random sample of 151 college students, 84...
4. Find the margin of error E. In a random sample of 151 college students, 84 had part-time jobs. Find the margin of error E for the 95% confidence interval used to estimate the population proportion. Round your answer to four decimal places. Answer 0.0792 5. Find the minimum sample size required to estimate the population proportion p: Margin of error: 0.10; confidence level: 95%; from a prior study, is known to be 66%. 6. Find the minimum sample size...
Sleep – College Students: Suppose you perform a study about the hours of sleep that college...
Sleep – College Students: Suppose you perform a study about the hours of sleep that college students get. You know that for all people, the average is about 7 hours. You randomly select 50 college students and survey them on their sleep habits. From this sample, the mean number of hours of sleep is found to be 6.2 hours with a standard deviation of 0.97 hours. We want to construct a 95% confidence interval for the mean nightly hours of...
Sleep – College Students: Suppose you perform a study about the hours of sleep that college...
Sleep – College Students: Suppose you perform a study about the hours of sleep that college students get. You know that for all people, the average is about 7 hours. You randomly select 45 college students and survey them on their sleep habits. From this sample, the mean number of hours of sleep is found to be 6.2 hours with a standard deviation of 0.97 hours. We want to construct a 95% confidence interval for the mean nightly hours of...
Sleep – College Students: Suppose you perform a study about the hours of sleep that college...
Sleep – College Students: Suppose you perform a study about the hours of sleep that college students get. You know that for all people, the average is about 7 hours. You randomly select 45 college students and survey them on their sleep habits. From this sample, the mean number of hours of sleep is found to be 6.2 hours with a standard deviation of 0.97 hours. We want to construct a 95% confidence interval for the mean nightly hours of...
1. When constructing a confidence interval to estimate a population proportion, what affects the size of...
1. When constructing a confidence interval to estimate a population proportion, what affects the size of the margin of error? A. The sample size B. The sample proportion C. The confidence level D. All of the above affect the size of the margin of error E. None of the above affect the size of the margin of error 2. What percentage of couples meet through online dating apps? A survey of a random sample of couples finds that 12% say...
Suppose you perform a study about the hours of sleep that college students get. You know...
Suppose you perform a study about the hours of sleep that college students get. You know that for all people, the average is about 7 hours. You randomly select 35 college students and survey them on their sleep habits. From this sample, the mean number of hours of sleep is found to be 6.2 hours with a standard deviation of 0.97 hours. We want to construct a 95% confidence interval for the mean nightly hours of sleep for all college...
Find the sample size needed to estimate the proportion of college  students that are freshmen so that...
Find the sample size needed to estimate the proportion of college  students that are freshmen so that the error is at most 3.5% for a 95% confidence interval.
1. The average number of minutes spent per day using social media by a population of...
1. The average number of minutes spent per day using social media by a population of college sophomores is 29.6 minutes. If we take a random sample of size n = 87 from this population and find that the sample standard deviation is 7.3 minutes, we know the sampling distribution of the sample mean in this case would have a standard deviation equal to A. 4.05 minutes. B. 1.60 minutes. C. 0.78 minutes. D. 7.30 minutes. E. 3.17minutes. 2. Return...
You want to estimate the mean time college students spend watching online videos each day. The...
You want to estimate the mean time college students spend watching online videos each day. The estimate must be within 2 minutes of the population mean. Determine the required sample size to construct a 99% confidence interval for the population mean. Assume that the population standard deviation is 4.4 minutes. Leave as an integer.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT