Year | Rate_(%) |
1987 | 10.5 |
1988 | 10.54 |
1989 | 9.65 |
1990 | 9.59 |
1991 | 8.13 |
1992 | 7.8 |
1993 | 6.83 |
1994 | 7.35 |
1995 | 6.88 |
1996 | 7.18 |
1997 | 6.67 |
1998 | 6.5 |
1999 | 6.8 |
2000 | 7.09 |
2001 | 6.03 |
2002 | 5.92 |
2003 | 5.91 |
2004 | 5.69 |
2005 | 5.96 |
2006 | 5.84 |
2007 | 5.72 |
2008 | 4.91 |
2009 | 4.72 |
2010 | 4.55 |
k=1 | k=1 | k=2 | k=2 | k=3 | k=3 | |
n | d L | d U | d L | d U | d L | d U |
15 | 1.08 | 1.36 | 0.95 | 1.54 | 0.82 | 1.75 |
16 | 1.1 | 1.37 | 0.98 | 1.54 | 0.86 | 1.73 |
17 | 1.13 | 1.38 | 1.02 | 1.54 | 0.9 | 1.71 |
18 | 1.16 | 1.39 | 1.05 | 1.53 | 0.93 | 1.69 |
19 | 1.18 | 1.4 | 1.08 | 1.53 | 0.97 | 1.68 |
20 | 1.2 | 1.41 | 1.1 | 1.54 | 1 | 1.68 |
21 | 1.22 | 1.42 | 1.13 | 1.54 | 1.03 | 1.67 |
22 | 1.24 | 1.43 | 1.15 | 1.54 | 1.05 | 1.66 |
23 | 1.26 | 1.44 | 1.17 | 1.54 | 1.08 | 1.66 |
24 | 1.27 | 1.45 | 1.19 | 1.55 | 1.1 | 1.66 |
25 | 1.29 | 1.45 | 1.21 | 1.55 | 1.12 | 1.66 |
The forecasted average December mortgage rate in 2011 is __% (Round to two decimal places as needed.)
Calculate the MAD for this forecast. (Round to two decimal places as needed.)
Determine the Durbin-Watson statistic (Round to two decimal places as needed.)
Identify the critical values. (Round to two decimal places as needed.)
Excel ADDon Megastat used.
A.
The forecasted average December mortgage rate in 2011 is __% (Round to two decimal places as needed.)
Regression Analysis |
|||||||
r² |
0.860 |
n |
24 |
||||
r |
-0.928 |
k |
1 |
||||
Std. Error of Estimate |
0.645 |
Dep. Var. |
Rate(%) |
||||
Regression output |
confidence interval |
||||||
variables |
coefficients |
std. error |
t (df=22) |
p-value |
95% lower |
95% upper |
|
Intercept |
a = |
9.718 |
0.272 |
35.740 |
5.56E-21 |
9.154 |
10.282 |
t |
b = |
-0.222 |
0.019 |
-11.643 |
7.08E-11 |
-0.261 |
-0.182 |
ANOVA table |
|||||||
Source |
SS |
df |
MS |
F |
p-value |
||
Regression |
56.455 |
1 |
56.455 |
135.57 |
7.08E-11 |
||
Residual |
9.162 |
22 |
0.416 |
||||
Total |
65.616 |
23 |
|||||
The fitted model is Yt = 9.718 - 0.2216×t
When t=25( year =2011). Predicted Rate =9.718 - 0.2216*25 =4.178
= 4.18 ( two decimals)
B.
Calculate the MAD for this forecast. (Round to two decimal places as needed.)
t |
Rate(%) |
Predicted |
Absolute Residual |
1 |
10.500 |
9.496 |
1.004 |
2 |
10.540 |
9.275 |
1.265 |
3 |
9.650 |
9.053 |
0.597 |
4 |
9.590 |
8.832 |
0.758 |
5 |
8.130 |
8.610 |
0.480 |
6 |
7.800 |
8.389 |
0.589 |
7 |
6.830 |
8.167 |
1.337 |
8 |
7.350 |
7.945 |
0.595 |
9 |
6.880 |
7.724 |
0.844 |
10 |
7.180 |
7.502 |
0.322 |
11 |
6.670 |
7.281 |
0.611 |
12 |
6.500 |
7.059 |
0.559 |
13 |
6.800 |
6.838 |
0.038 |
14 |
7.090 |
6.616 |
0.474 |
15 |
6.030 |
6.394 |
0.364 |
16 |
5.920 |
6.173 |
0.253 |
17 |
5.910 |
5.951 |
0.041 |
18 |
5.690 |
5.730 |
0.040 |
19 |
5.960 |
5.508 |
0.452 |
20 |
5.840 |
5.287 |
0.553 |
21 |
5.720 |
5.065 |
0.655 |
22 |
4.910 |
4.843 |
0.067 |
23 |
4.720 |
4.622 |
0.098 |
24 |
4.550 |
4.400 |
0.150 |
MAD |
0.506 |
MAD= 0.51 ( two decimals)
C.
Determine the Durbin-Watson statistic (Round to two decimal places as needed.)
Durbin-Watson statistic= 0.60
D.
Identify the critical values. (Round to two decimal places as needed.)
Critical values for n=24 and K=1 is ( 1.24, 1.45).
Obtained Durbin-Watson statistic value = 0.60 which is less than the lower limit dL 1.24.
This suggests there is presence of positive auto correlation.
Get Answers For Free
Most questions answered within 1 hours.