Question

Physics Giancoli 5th edition ch4 Q62. A block m1 lying on a frictinless inclined plane is...

Physics Giancoli 5th edition
ch4 Q62. A block m1 lying on a frictinless inclined plane is connected to a mass m2 by a massless cord passing over a pulley. A. The coefficient of kinetic friction between M1 and the plane is .15. The two masses are equal to 2.7 kg. As m2 moves down, determine the magnitude and direction of the acceleration of m1 and m2 given the angle of inclination is 25 degrees.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A block of mass m1 = 3.27 kg on a frictionless plane inclined at angle θ...
A block of mass m1 = 3.27 kg on a frictionless plane inclined at angle θ = 26.2° is connected by a cord over a massless, frictionless pulley to a second block of mass m2 = 2.60 kg hanging vertically (see the figure). (a) What is the acceleration of the hanging block (choose the positive direction down)? (b) What is the tension in the cord?
A block of mass M2 = 8.45 kg on a plane inclined moving down at angle...
A block of mass M2 = 8.45 kg on a plane inclined moving down at angle θ = 50° is connected by a cord over a massless, frictionless pulley to a second block of mass M1 = 5.36 kg on a horizontal surface. The coefficient of kinetic friction between M1, M2 and the surface is μk = 0.150, the Force F1 = 11.3 N is acting downward on M1, and the Force F2 = 21.8 N is acting on M2...
A block with mass ?1 is placed on an inclined plane with slope angle ? and...
A block with mass ?1 is placed on an inclined plane with slope angle ? and is connected to a hanging block with mass ?2 by a cord passing over a small, frictionless pulley. The coefficient of static friction is ?s, and the coefficient of kinetic friction is ?k. (a) Find the value of ?2 for which the block of mass ?1 moves up the plane at a constant speed once it is set in motion (b) Find the value...
A block m1= 0.5kg slides on a plane inclined at 300 to the horizontal. It is...
A block m1= 0.5kg slides on a plane inclined at 300 to the horizontal. It is attached to a string which runs over a pulley and has a mass m2=0.2kg hanging at the other end. The coefficients of friction between the block m1 and the plane are: μs = 0.4 and μk = 0.3 . Assume that at t=0s, the block m1 is moving down the incline. Refer to this moment and: a) Draw FBD for both blocks. b) Write...
Constants (Figure 1)Block 1, of mass m1 = 0.600 kg , is connected over an ideal...
Constants (Figure 1)Block 1, of mass m1 = 0.600 kg , is connected over an ideal (massless and frictionless) pulley to block 2, of mass m2, as shown. For an angle of ? = 30.0 ? and a coefficient of kinetic friction between block 2 and the plane of ? = 0.400, an acceleration of magnitude a = 0.400 m/s2 is observed for block 2. Part A Find the mass of block 2, m2. Express your answer numerically in kilograms.
Two blocks (m1=5.5kg, m2=7.2kg ) are connected by a string that passes through a massless pulley...
Two blocks (m1=5.5kg, m2=7.2kg ) are connected by a string that passes through a massless pulley as shown in the Figure. The first block with mass m1  slides up the inclined plane when the system is released. The inclined plane makes an angle  θ = 310  with the horizontal and the kinetic friction coefficient between the inclined plane and   m1 is =0.35.   Take  g=10m/s2 Find the speed of the block with mass m2 after it travels h=5.6m.
In the figure below, m1 = 3.2 kg, m2 = 5.3 kg, and the coefficient of...
In the figure below, m1 = 3.2 kg, m2 = 5.3 kg, and the coefficient of kinetic friction between the inclined plane and the 3.2-kg block is μk = 0.26. Find the magnitude of the acceleration of the masses and the tension in the cord. the ramp is 30 degrees m2 is hanging
Two blocks with masses M1 and M2 are connected by a massless string that passes over...
Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown. M1 has a mass of 2.25 kg and is on an incline of θ1=46.5∘ with coefficient of kinetic friction μ1=0.205. M2 has a mass of 6.05 kg and is on an incline of θ2=33.5∘ with coefficient of kinetic friction μ2=0.105. The two‑block system is in motion with the block of mass M2 sliding down the ramp. Find the magnitude...
7) A block of mass m1 = 38 kg on a horizontal surface is connected to...
7) A block of mass m1 = 38 kg on a horizontal surface is connected to a mass m2 = 21.6 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction between m1 and the horizontal surface is 0.24. (a) What is the magnitude of the acceleration (in m/s2) of the hanging mass? Answer:    m/s2 (b) Determine the...
Two blocks with masses M1 and M2 are connected by a massless string that passes over...
Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown. M1 has a mass of 2.25 kg and is on an incline of 49.5° with coefficient of kinetic friction ?1 = 0.205. M2 has a mass of 5.45 kg and is on an incline of 31.5° with coefficient of kinetic friction ?2 = 0.105. Find the magnitude of the acceleration of M2 down the incline.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT