Question

A simple harmonic oscillator consists of a block of mass 4.50 kg attached to a spring...

A simple harmonic oscillator consists of a block of mass 4.50 kg attached to a spring of spring constant 210 N/m. When t = 1.90 s, the position and velocity of the block are x = 0.143 m and v = 3.870 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at t = 0 s?

Homework Answers

Answer #1

(a)

w = sqrt(k/m) = sqrt(210/4.5) = 6.83

From SHM we have x = A*cos(wt + phi) and v = -wA*sin(wt + phi )

So dividing the 2nd eqn by the first gives

v/x = -w*sin(wt + phi)/cos(wt + phi) = -w*tan(wt + phi)

so (wt + phi) = -arctan(v/(x*w)) = - arctan(3.870/(0.143*6.83)) = -1.3235

So phi = -1.3235 – (6.83 *1.9) = -14.3 rad

Now plugging into the position eqn we have x = A*cos(wt + phi)

=> A = x/cos(wt + phi) = 0.143/cos(6.83 *1.9 – 14.3) = 0.584m

b) At t = 0 then x = 0.584*cos(0 – 14.3) = -0.09467m

c) v = -6.83 *0.584*sin(0 - 14.3) = 3.94m/s

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A simple harmonic oscillator consists of a block of mass 3.70 kg attached to a spring...
A simple harmonic oscillator consists of a block of mass 3.70 kg attached to a spring of spring constant 410 N/m. When t = 1.60 s, the position and velocity of the block are x = 0.102 m and v = 3.050 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at t = 0 s?
A simple harmonic oscillator consists of a block of mass 3.00 kg attached to a spring...
A simple harmonic oscillator consists of a block of mass 3.00 kg attached to a spring of spring constant 110 N/m. When t = 2.30 s, the position and velocity of the block are x = 0.127 m and v = 3.580 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at t = 0 s?
A simple harmonic oscillator consists of a block of mass 2.90 kg attached to a spring...
A simple harmonic oscillator consists of a block of mass 2.90 kg attached to a spring of spring constant 280 N/m. When t = 2.20 s, the position and velocity of the block are x = 0.189 m and v = 3.000 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at t = 0 s?
A simple harmonic oscillator consists of a block of mass 1.70 kg attached to a spring...
A simple harmonic oscillator consists of a block of mass 1.70 kg attached to a spring of spring constant 340 N/m. When t = 0.840 s, the position and velocity of the block are x = 0.101 m and v = 3.100 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at t = 0 s?
A simple harmonic oscillator consists of a block of mass 3.30 kg attached to a spring...
A simple harmonic oscillator consists of a block of mass 3.30 kg attached to a spring of spring constant 440 N/m. When t = 1.30 s, the position and velocity of the block are x = 0.154 m and v = 3.540 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at t = 0 s?
A simple harmonic oscillator consists of a block of mass 1.80 kg attached to a spring...
A simple harmonic oscillator consists of a block of mass 1.80 kg attached to a spring of spring constant 360 N/m. When t = 0.520 s, the position and velocity of the block are x = 0.200 m and v = 4.420 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at t = 0 s?
A simple harmonic oscillator consists of a block of mass 2.60 kg attached to a spring...
A simple harmonic oscillator consists of a block of mass 2.60 kg attached to a spring of spring constant 350 N/m. When t = 2.20 s, the position and velocity of the block are x = 0.175 m and v = 3.420 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at t = 0 s?
A simple harmonic oscillator consists of a block of mass 1.30 kg attached to a spring...
A simple harmonic oscillator consists of a block of mass 1.30 kg attached to a spring of spring constant 490 N/m. When t= 0.500 s, the position and velocity of the block are x = 0.155 m and v = 3.510 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at t = 0 s?
A simple harmonic oscillator consists of a block of mass 3.10 kg attached to a spring...
A simple harmonic oscillator consists of a block of mass 3.10 kg attached to a spring of spring constant 240 N/m. When t = 1.80 s, the position and velocity of the block are x = 0.155 m and v = 4.360 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at t = 0 s? (really need help with part c for part a i got .52 and...
A mass-spring oscillator consists of a 1.95-kg block attached to a spring of spring constant 145...
A mass-spring oscillator consists of a 1.95-kg block attached to a spring of spring constant 145 N/m. At time t = 2.30 s, the position and the velocity of the block are x = 0.130 m and v = 5.84 m/s respectively. What was the position of the block at t = 0? What was the speed of the block at t = 0?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT