Question

A flexible balloon contains 0.340 mol of an unknown polyatomic gas. Initially the balloon containing the...

A flexible balloon contains 0.340 mol of an unknown polyatomic gas. Initially the balloon containing the gas has a volume of 6650 cm3 and a temperature of 27.0 ?C. The gas first expands isobarically until the volume doubles. Then it expands adiabatically until the temperature returns to its initial value. Assume that the gas may be treated as an ideal gas with Cp=33.26J/mol?K and ?=4/3.

A)What is the total heat Q supplied to the gas in the process? (in joules)

B)What is the total change in the internal energy ?U of the gas? (in joules)

C)What is the total work W done by the gas?

D)What is the final volume V? (m^3)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two moles of helium are initially at a temperature of 30.0 ∘C and occupy a volume...
Two moles of helium are initially at a temperature of 30.0 ∘C and occupy a volume of 3.50×10−2 m3 . The helium first expands at constant pressure until its volume has doubled. Then it expands adiabatically until the temperature returns to its initial value. Assume that the helium can be treated as an ideal gas. A.) What is the total heat supplied to the helium in the process? In J B.) What is the total change in internal energy of...
A cylinder with a piston contains 0.100 mol of nitrogen at 2.00×105 Pa and 320 K...
A cylinder with a piston contains 0.100 mol of nitrogen at 2.00×105 Pa and 320 K . The nitrogen may be treated as an ideal gas. The gas is first compressed isobarically to half its original volume. It then expands adiabatically back to its original volume, and finally it is heated isochorically to its original pressure. A) Find the work done by the gas during the initial compression B) Find the heat added to the gas during the initial compression...
A cylinder with a piston contains 0.160 mol of nitrogen at 1.80×105 Pa and 310 K...
A cylinder with a piston contains 0.160 mol of nitrogen at 1.80×105 Pa and 310 K . The nitrogen may be treated as an ideal gas. The gas is first compressed isobarically to half its original volume. It then expands adiabatically back to its original volume, and finally it is heated isochorically to its original pressure. a.) Find the work done by the gas during the initial compression. b.)Find the heat added to the gas during the initial compression. c.)Find...
A balloon containing 0.143 mol Ne gas has a volume of 1.6 L at 2.2 atm...
A balloon containing 0.143 mol Ne gas has a volume of 1.6 L at 2.2 atm and 28°C. How many grams of neon should be added to the balloon to increase the volume to 2.9 L at the same pressure and temperature?
3. 10.0 moles of ideal gas cloud has an initial pressure of 1.00 bar, initial volume...
3. 10.0 moles of ideal gas cloud has an initial pressure of 1.00 bar, initial volume of 100.0L and temperature of 25.0ºC. The cloud expands adiabatically to a final volume of 1000.0L. Cp,m= 20.79 J / mol K (Cp,m is molar heat capacity and constant pressure) a. (10 pts) What is the final pressure of the gas cloud? b. (10 pts) What is the final temperature of the gas cloud? c. (10 pts) What is the change in entropy for...
A 0.50 L container is initially filled with Nitrogen gas at STP. The gas expands against...
A 0.50 L container is initially filled with Nitrogen gas at STP. The gas expands against a piston adiabatically to a volume of 50.0% larger than the original volume. The Nitrogen may be treated as an ideal gas with ?=7/5. a) Calculate the final temperature and pressure. b) What is the work done? c) Sketch a pV-diagram for this process. On this diagram also draw the isotherms for the initial and final temperatures.
A flexible container at an initial volume of 3.10 L contains 2.51 mol of gas. More...
A flexible container at an initial volume of 3.10 L contains 2.51 mol of gas. More gas is then added to the container until it reaches a final volume of 18.1 L. Assuming the pressure and temperature of the gas remain constant, calculate the number of moles of gas added to the container.
A 2.00-mol sample of a diatomic ideal gas expands slowly and adiabatically from a pressure of...
A 2.00-mol sample of a diatomic ideal gas expands slowly and adiabatically from a pressure of 5.04 atm and a volume of 13.0 L to a final volume of 31.0 L. (a) What is the final pressure of the gas? atm (b) What are the initial and final temperatures? initial K final K (c) Find Q for the gas during this process. kJ (d) Find ΔEint for the gas during this process. kJ (e) Find W for the gas during...
n = 2.58 mol of Hydrogen gas is initially at T = 376 K temperature and...
n = 2.58 mol of Hydrogen gas is initially at T = 376 K temperature and pi = 1.88×105 Pa pressure. The gas is then reversibly and isothermally compressed until its pressure reaches pf = 8.78×105 Pa. What is the volume of the gas at the end of the compression process? What would be the temperature of the gas, if the gas was allowed to adiabatically expand back to its original pressure?
A cylinder of volume 0.280 m3 contains 10.9 mol of neon gas at 20.8°C. Assume neon...
A cylinder of volume 0.280 m3 contains 10.9 mol of neon gas at 20.8°C. Assume neon behaves as an ideal gas. (a) What is the pressure of the gas? Pa (b) Find the internal energy of the gas. J (c) Suppose the gas expands at constant pressure to a volume of 1.000 m3. How much work is done on the gas? J (d) What is the temperature of the gas at the new volume? K (e) Find the internal energy...