Question

Three moles of an ideal gas are inside a 5.0 L chamber. 50.6 kJ of heat...

Three moles of an ideal gas are inside a 5.0 L chamber. 50.6 kJ of heat are added to the gas and, in the process, the pressure increases from 2.0 atm to 10.0 atm.

(A) Find the initial and final temperatures of the gas (in both °C and K)

(B) Find the change in internal energy of the gas

Homework Answers

Answer #1

since volume is constant = 5L = 5*10^-3 m3

1 atm =101325 pascals

PV= nRT

Ti = PV/nR = 2* 101325*5*10^-3 / ( 3*8.314)

=40.6242483 K  or 40.6242483 -273 = -232.375752 deg celsius

Volume is constant so  

Pi/Ti = Pf /Tf

2/ 40.6242483 = 10 / Tf

Tf = 10 / (2/ 40.6242483 ) = 203.121241 K or  203.121241 -273 = -69.878759 deg celsius

(B)

Q = ΔU+W ( volume is constant so W= 0

ΔU = Q = 50.6 kJ answer

let me know in a comment if there is any problem or doubts​

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An ideal monatomic gas is contained in a vessel of constant volume 0.330 m3. The initial...
An ideal monatomic gas is contained in a vessel of constant volume 0.330 m3. The initial temperature and pressure of the gas are 300 K and 5.00 atm, respectively. The goal of this problem is to find the temperature and pressure of the gas after 24.0 kJ of thermal energy is supplied to the gas. (a) Use the ideal gas law and initial conditions to calculate the number of moles of gas in the vessel. Your response differs from the...
A 2.00-mol sample of a diatomic ideal gas expands slowly and adiabatically from a pressure of...
A 2.00-mol sample of a diatomic ideal gas expands slowly and adiabatically from a pressure of 5.04 atm and a volume of 13.0 L to a final volume of 31.0 L. (a) What is the final pressure of the gas? atm (b) What are the initial and final temperatures? initial K final K (c) Find Q for the gas during this process. kJ (d) Find ΔEint for the gas during this process. kJ (e) Find W for the gas during...
In this problem, 0.90 mole of a monatomic ideal gas is initially at 285 K and...
In this problem, 0.90 mole of a monatomic ideal gas is initially at 285 K and 1 atm. (a) What is its initial internal energy? _____ kJ (b) Find its final internal energy and the work done by the gas when 420 J of heat are added at constant pressure. final internal energy ________kJ work done by the gas _______kJ (c) Find the same quantities when 420 J of heat are added at constant volume. finale internal energy ________kJ work...
150 grams of C2H6 an ideal gas has an initial pressure of 9120 mmHg and a...
150 grams of C2H6 an ideal gas has an initial pressure of 9120 mmHg and a temperature of 300 K. At a constant temperature and moles, the gas changes to a final pressure is 2280 mmHg. a) Calculate the initial and final volumes (L) b) Calculate the work done (in kJ) for the gas volume change if it is carried out against a constant external pressure of 6 atm. (1 L atm = 101.325 J) c) Using answer 5b, is...
Please solve the following problems. You must show all work. 1. A 10.0 cm radius piston...
Please solve the following problems. You must show all work. 1. A 10.0 cm radius piston compresses a gas isothermally from a height of 15.0 cm to 2.50 cm at a constant pressure of 2.0 atm. a) How much heat was added to the gas? b) Now if 7000 J of heat is added to the system and the piston is only moves 5.0 cm up, what is the change in the internal energy of the system is the pressure...
17) Three moles of an ideal monatomic gas expand at a constant pressure of 2.70 atm...
17) Three moles of an ideal monatomic gas expand at a constant pressure of 2.70 atm ; the volume of the gas changes from 3.10×10−2 m3 to 4.60×10−2 m3 . Part A Calculate the initial temperature of the gas. Part B Calculate the final temperature of the gas. Part C Calculate the amount of work the gas does in expanding. Part D Calculate the amount of heat added to the gas. Part E Calculate the change in internal energy of...
1. Under constant-volume conditions, 4200 J of heat is added to 1.4 moles of an ideal...
1. Under constant-volume conditions, 4200 J of heat is added to 1.4 moles of an ideal gas. As a result, the temperature of the gas increases by 103 K. How much heat would be required to cause the same temperature change under constant-pressure conditions? Do not assume anything about whether the gas is monatomic, diatomic, etc. 2. A system gains 3080 J of heat at a constant pressure of 1.36 × 105 Pa, and its internal energy increases by 4160...
Three moles of a monatomic ideal gas are heated at a constant volume of 2.90 m3....
Three moles of a monatomic ideal gas are heated at a constant volume of 2.90 m3. The amount of heat added is 5.10 103 J. (a) What is the change in the temperature of the gas? _____K (b) Find the change in its internal energy. _____J (c) Determine the change in pressure. _____Pa
Three moles of an ideal monatomic gas expand at a constant pressure of 2.90atm : the...
Three moles of an ideal monatomic gas expand at a constant pressure of 2.90atm : the volume of the gas changes from 3.30*10^-2m^3 to 4.50*10^-2m^3. Part A, Calculate the initial temperature of the gas. Part B, Calculate the final temperature of the gas. Part C, Calculate the amount of work the gas does in expanding. Part D, Calculate the amount of heat added to the gas. Part E, Calculate the change in internal energy of the gas.
An ideal monatomic gas is contained in a vessel of constant volume 0.400 m3. The initial...
An ideal monatomic gas is contained in a vessel of constant volume 0.400 m3. The initial temperature and pressure of the gas are 300 K and 5.00 atm, respectively. The goal of this problem is to find the temperature and pressure of the gas after 18.0 kJ of thermal energy is supplied to the gas. (a) Use the ideal gas law and initial conditions to calculate the number of moles of gas in the vessel. 80.99 Correct: Your answer is...