Question

A 0.440-kg pendulum bob passes through the lowest part of its path at a speed of...

A 0.440-kg pendulum bob passes through the lowest part of its path at a speed of 3.16 m/s.

(a) What is the magnitude of the tension in the pendulum cable at this point if the pendulum is 79.0 cm long?

(b) When the pendulum reaches its highest point, what angle does the cable make with the vertical? (Enter your answer to at least one decimal place.)


(c) What is the magnitude of the tension in the pendulum cable when the pendulum reaches its highest point?

Homework Answers

Answer #1

Answer: Given mass of pendulam m=0.440kg

Speed of pendulam v= 3.16 m/s

Length of pendulam L= r= 79.0 cm= 0.79m

If the bob were at rest the tension will be simply equal to the weight w=mg.
Since it is moving with a velocity v, the tension should provide the centripetal force of ( mv^2 / r ) also.
T = m v^2 / r + mg = m {[v^2 /r] + g}
= 0.440{[3.16^2 / 0.79] + 9.8} = 9.87 N

The magnitude of the tension in the pendulum cable at this point T= 9.87N
b] The vertical height through which it goes up is given by
h = v^2 /2g

and the angle is given by X

cos X = [L -h] / L

cos X = {0.79 - [3.16^2/ 19.6]} / 0.79
X = 69.2°

angle does the cable make with the vertical is X= 69.2 degrees
c) the magnitude of the tension in the pendulum cable when the pendulum reaches its highest point is
T = mg cos X = 0.44*9.8*cos 69.2

T = 1.53 N

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 0.309 kg pendulum bob passes through the lowest part of its path at a speed...
A 0.309 kg pendulum bob passes through the lowest part of its path at a speed of 3.20 m/s. What is the tension in the pendulum cable at this point if the pendulum is 88.7 cm long? Tries 0/12 When the pendulum reaches its highest point, what angle does the cable make with the vertical? Tries 0/12 What is the tension in the pendulum cable when the pendulum reaches its highest point?
The length of a simple pendulum is 0.68 m , the pendulum bob has a mass...
The length of a simple pendulum is 0.68 m , the pendulum bob has a mass of 295 g , and it is released at an angle of 11 ? to the vertical. Assume SHM. Part A With what frequency does it oscillate? Part B What is the pendulum bob's speed when it passes through the lowest point of the swing? Part C What is the total energy stored in this oscillation assuming no losses?
A pendulum swings through an arc of 90.0° (45.0° on either side of the vertical). The...
A pendulum swings through an arc of 90.0° (45.0° on either side of the vertical). The mass of the bob is 4.10 kg and the length of the suspending cord is 1.70 m. (a) Find the tension in the cord at the end points of the swing.    (b) Find the velocity of the bob as it passes its lowest point and the tension in the cord at this point. velocity = tension =
A simple pendulum has a length of 85 cm and a bob of mass 1.1 kg....
A simple pendulum has a length of 85 cm and a bob of mass 1.1 kg. When the string is at 28 degrees to the vertical. the bob has a speed of 2.5 m/s. a) What is the maximum speed of the bob? b) What is the maximum angle to the vertical? degrees
The length of a simple pendulum is 0.85 m and the mass of the particle (the...
The length of a simple pendulum is 0.85 m and the mass of the particle (the "bob") at the end of the cable is 0.26 kg. The pendulum is pulled away from its equilibrium position by an angle of 7.75° and released from rest. Assume that friction can be neglected and that the resulting oscillatory motion is simple harmonic motion. (a) What is the angular frequency of the motion? rad/s (b) Using the position of the bob at its lowest...
A pendulum consists of a 2.5 kg stone swinging on a 4.1 m string of negligible...
A pendulum consists of a 2.5 kg stone swinging on a 4.1 m string of negligible mass. The stone has a speed of 7.9 m/s when it passes its lowest point. (a) What is the speed when the string is at 63 ˚ to the vertical? (b) What is the greatest angle with the vertical that the string will reach during the stone's motion? (c) If the potential energy of the pendulum-Earth system is taken to be zero at the...
A pendulum consists of a 3.8 kg stone swinging on a 4.4 m string of negligible...
A pendulum consists of a 3.8 kg stone swinging on a 4.4 m string of negligible mass. The stone has a speed of 7.8 m/s when it passes its lowest point. (a) What is the speed when the string is at 62 ˚ to the vertical? (b) What is the greatest angle with the vertical that the string will reach during the stone's motion? (c) If the potential energy of the pendulum-Earth system is taken to be zero at the...
A simple pendulum is constructed by attaching a 0.460 kg ball to a 0.710 m long...
A simple pendulum is constructed by attaching a 0.460 kg ball to a 0.710 m long cord of negligible mass. If air resistance is negligible and the pendulum is swinging such that its maximum angular displacement is 30.0° determine the following. (a) speed of the ball when it passes through its lowest position (b) tension in the string when the ball is at its highest position (c) tension in the string when the ball is at its lowest position
A pendulum consisting of a small bob of mass m at the end of an effectively...
A pendulum consisting of a small bob of mass m at the end of an effectively massless rigid rod of length L is set into motion by releasing its bob from a small angle theta 0 from the vertical. a) What maximum angular and linear speed does the pendulum achieve? Where in its path is this speed reached? b) What are the angular and linear oscillation frequencies of the pendulum [or what is its period].
A 17 g bullet is fired into the bob of a ballistic pendulum of mass 1.3...
A 17 g bullet is fired into the bob of a ballistic pendulum of mass 1.3 kg. When the bob is at its maximum height, the strings make an angle of 60° with the vertical. The length of the pendulum is 2.3 m. Find the speed of the bullet. _____m/s