Question

A very, very massive object traveling at 20 m/s strikes a very light object, initially at...

A very, very massive object traveling at 20 m/s strikes a very light object, initially at rest and the light object moves off in the direction of travel of the heavy object.  If the collision is elastic, the speed of the lighter object is about:

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A curling stone of mass 20 kg and initially traveling at 2.0 m/s collides head-on with...
A curling stone of mass 20 kg and initially traveling at 2.0 m/s collides head-on with a lighter stone of mass 15 kg which is initially at rest. After the collision the struck stone has a speed of 1.6 m/s in the same direction as the initial velocity of the heavy stone. a) What is the final velocity of the heavy stone? b) Is this collision elastic? Explain. If the collision is not elastic, find the macroscopic energy lost in...
A 2250 kg car traveling in the neagtive x direction at 8.5 m/s strikes a second...
A 2250 kg car traveling in the neagtive x direction at 8.5 m/s strikes a second car of mass 2830 kg which is moving. The first rebounds and moves off with a speed of 2.7 m/s. After the collision, the second car moves in the negative x direction at 3.2 m/s. What was the original speed and direction of the second car? Explain your reasoning. Then how much kinetic energy was lost in the collision?
A 2.3-kg object traveling at 6.1 m/s collides head-on with a 3.5-kg object traveling in the...
A 2.3-kg object traveling at 6.1 m/s collides head-on with a 3.5-kg object traveling in the opposite direction at 4.8 m/s. If the collision is perfectly elastic, what is the final speed of the 2.3-kg object?
A truck traveling at 20 m/s east strikes a bug flying towards it at 4 m/s....
A truck traveling at 20 m/s east strikes a bug flying towards it at 4 m/s. (All velocities relative to the ground). The collision is elastic. What are the velocities of the truck and the bug after the collision?
A cue ball traveling at 4.0 m/s makes a glancing, elastic collision with a target ball...
A cue ball traveling at 4.0 m/s makes a glancing, elastic collision with a target ball of equal mass that is initially at rest. The cue ball is deflected so that it makes an angle of 30° with its original direction of travel. Find the speed of each ball after the collision. cue ball? target ball?
A 2-kg object is moving east at 9 m/s when it collides with a 8-kg object...
A 2-kg object is moving east at 9 m/s when it collides with a 8-kg object that is initially at rest. After the completely elastic collision, the larger object moves east at 1 m/s. Find the final velocity of the smaller object after the collision. (East is defined as positive. Indicate the direction with the sign of your answer.) m/s
A cue ball traveling at 4.25 m/s makes a glancing, elastic collision with a target ball...
A cue ball traveling at 4.25 m/s makes a glancing, elastic collision with a target ball of equal mass that is initially at rest. The cue ball is deflected so that it makes an angle of 30.0° with its original direction of travel. (a) Find the angle between the velocity vectors of the two balls after the collision. ° (b) Find the speed of each ball after the collision. cue ball     m/s target ball     m/s
Two gliders collide head-on. In this case the bumpers work very well and the collision is...
Two gliders collide head-on. In this case the bumpers work very well and the collision is elastic. Initially the heavy glider has a speed of 2.5 m/s and the light glider a speed of 1.8 m/s. The heavy glider’s mass is 0.300 kg and the light glider’s mass is 0.200 kg. You may treat the light glider as going in the +x direction initially and the heavy glider going in the –x direction. What is the velocity of the light...
A 3.20-kg object is moving east at 4.50 m/s when it collides with a 6.00-kg object...
A 3.20-kg object is moving east at 4.50 m/s when it collides with a 6.00-kg object that is initially at rest. After the completely elastic collision, the larger object moves east at 3.13 m/s. 1) What is the final velocity of the smaller object after the collision? Assume that the positive direction is to the east.(Express your answer to three significant figures.)
A cue ball traveling at 4.23 m/s makes a glancing, elastic collision with a target ball...
A cue ball traveling at 4.23 m/s makes a glancing, elastic collision with a target ball of equal mass that is initially at rest. The cue ball is deflected so that it makes an angle of 30.0° with its original direction of travel. (a) Find the angle between the velocity vectors of the two balls after the collision. ______° (b) Find the speed of each ball after the collision. cue ball ___ m/s target ball ___ m/s SHOW ALL WORK!