Question

A motor drives a disk initially at rest through 23.9 rotations in 5.0 s. Assume the...

A motor drives a disk initially at rest through 23.9 rotations in 5.0 s. Assume the vector sum of the torques caused by the force exerted by the motor and the force of friction is constant. The rotational inertia of the disk is 4.0 kg⋅m2. When the motor is switched off, the disk comes to rest in 12 s. A.)What is the magnitude of torque created by the force of friction? B.)What is the magnitude of torque caused by the force exerted by the motor?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A wheel on a shaft is initially at rest, when a motor starts to supply constant...
A wheel on a shaft is initially at rest, when a motor starts to supply constant torque. The wheel has rotational inertia I=19.4 kg m2 about the shaft. If the motor needs to supply torque so that the wheel will make exactly 3 full revolutions in time t=3.0 seconds (starting from rest), how much torque must the motor supply?
A torque of 35.0 N · m is applied to an initially motionless wheel which rotates...
A torque of 35.0 N · m is applied to an initially motionless wheel which rotates around a fixed axis. This torque is the result of a directed force combined with a friction force. As a result of the applied torque the angular speed of the wheel increases from 0 to 10.5 rad/s. After 6.10 s the directed force is removed, and the wheel comes to rest 60.2 s later. (a)What is the wheel's moment of inertia (in kg ·...
A stepper motor drives a precision mechanism through a toothed belt and pulley system. Friction in...
A stepper motor drives a precision mechanism through a toothed belt and pulley system. Friction in the system requires a constant force of 205N. The pulley has a diameter of 130mm. A force of 310N is required to accelerate the machine drive uniformly up to a velocity of 0.2m/s in 0.5 seconds. This velocity is held constant for 3 seconds before the motor decelerates to rest in 1.5 s. The stepper motor operates with 400 pulses/rev and is coupled to...
A wheel of radius 0.168 m, which is moving initially at 33.0 m/s, rolls to a...
A wheel of radius 0.168 m, which is moving initially at 33.0 m/s, rolls to a stop in 288 m. Calculate the magnitudes of (a) its linear acceleration and (b) its angular acceleration. (c) The wheel's rotational inertia is 1.98 kg  m2 about its central axis. Calculate the magnitude of the torque about the central axis due to friction on the wheel.
1) The combination of an applied force and a friction force produces a constant total torque...
1) The combination of an applied force and a friction force produces a constant total torque of 35.8 N · m on a wheel rotating about a fixed axis. The applied force acts for 5.90 s. During this time, the angular speed of the wheel increases from 0 to 10.1 rad/s. The applied force is then removed, and the wheel comes to rest in 60.1 s. (a) Find the moment of inertia of the wheel.   kg · m2 (b) Find...
The combination of an applied force and a frictional force produces a constant torque of 40...
The combination of an applied force and a frictional force produces a constant torque of 40 N·m on a wheel rotating about a fixed axis. The applied force acts for 8.0 seconds, during which time the angular speed of the wheel increases from 0 to 700 degrees/second. The applied force is then removed, and the wheel comes to rest in 55 s. Answer the following questions. (a)What is the magnitude of the angular acceleration of the wheel while the applied...
10.4-5-6) A) A car traveling on a flat (unbanked), circular track accelerates uniformly from rest with...
10.4-5-6) A) A car traveling on a flat (unbanked), circular track accelerates uniformly from rest with a tangential acceleration of 2.10 m/s2. The car makes it one quarter of the way around the circle before it skids off the track. From these data, determine the coefficient of static friction between the car and track. ________ (Hint: You are not given a value of the radius of the track. Think through the problem using the symbol R for this value and...
1. Starting from rest, a CD takes 3.0 s to reach its operating angular velocity of...
1. Starting from rest, a CD takes 3.0 s to reach its operating angular velocity of 450 rpm. The mass of a CD is 17 g and its diameter is 12 cm. You may assume that the small opening at the center of the CD is unimportant when calculating the rotational inertia. Assume that the angular acceleration is constant. a. What is the rotational kinetic energy of the CD after it has completely spun up? b. How high off the...
A child pushes her friend (m = 25 kg) located at a radius r = 1.5...
A child pushes her friend (m = 25 kg) located at a radius r = 1.5 m on a merry-go-round (rmgr = 2.0 m, Imgr = 1000 kg*m2) with a constant force F = 90 N applied tangentially to the edge of the merry-go-round (i.e., the force is perpendicular to the radius). The merry-go-round resists spinning with a frictional force of f = 10 N acting at a radius of 1 m and a frictional torque τ = 15 N*m...
1. A person pushes on a doorknob with a force of 5.00 N perpendicular to the...
1. A person pushes on a doorknob with a force of 5.00 N perpendicular to the surface of the door. The doorknob is located 0.800 m from the axis of the hinges of the door. The door begins to rotate with an angular acceleration of 2.00 rad/s2. What is the moment of inertia of the door about hinges? Select one: a. 6.50 kg.m2 b. 2.50 kg.m2 c. 12.5 kg.m2 d. 2.00 kg.m2 2. A dumbbell has a connecting bar of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT