Question

1. If you fill an organ pipe with helium instead of air, the fundamental frequency will_______...

1. If you fill an organ pipe with helium instead of air, the fundamental frequency will_______

2. The wavelength and frequency are the same in the air, because it is air that is resonating in the

organ pipe. => Is this statement always correct? Why?

Homework Answers

Answer #1

I have answered your first question in the image attached while your second question appears to be missing some information and is little ambiguous.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The fundamental frequency of an organ pipe, closed at one end, is 255.6 Hz. a)What is...
The fundamental frequency of an organ pipe, closed at one end, is 255.6 Hz. a)What is the fundamental frequency of this organ pipe if the temperature drops to 1.20°C? (Hz) The fundamental frequency of an organ pipe, open at both ends, is 278.9 Hz. b) What is the fundamental frequency of this organ pipe if the temperature drops to 1.00°C?
A closed organ pipe has a fundamental frequency of 100 Hz. The first overtone of an...
A closed organ pipe has a fundamental frequency of 100 Hz. The first overtone of an open organ pipe has the same frequency as the first overtone of the closed pipe. What is the length of each pipe?
An organ pipe open at both ends is to be designed so that the fundamental frequency...
An organ pipe open at both ends is to be designed so that the fundamental frequency it plays is 220 Hz. a. What length of pipe is needed? b. If one end of the pipe is stopped up, what other note (frequency) can this same pipe play? c. Draw the fundamental frequency for the pipe open at both ends and when it is closed at one end. d. Calculate and draw the next higher harmonic when one end of the...
An pipe of length L that is open at both ends is resonating at its fundamental...
An pipe of length L that is open at both ends is resonating at its fundamental frequency. Which statement about the sound is correct?(No answer choices are shown)
Consider a half-open organ pipe of a certain length. Sketch: a. the fundamental waveform b. the...
Consider a half-open organ pipe of a certain length. Sketch: a. the fundamental waveform b. the first overtone waveform c. the second overtone waveform 2. how would the frequency of the first overtone change if you closed both ends of the same pipe? explain and or show how it compares to the original frequency of the first overtone 3. how would the frequency of the first overtone change if you cut the length of the original half open pipe in...
1.An organ pipe is 151 cm long. The speed of sound in air is 343 m/s....
1.An organ pipe is 151 cm long. The speed of sound in air is 343 m/s. a. What are the fundamental and first three audible overtones if the pipe is closed at one end? Express your answers using three significant figures separated by commas. b. What are the fundamental and first three audible overtones if the pipe is open at both ends? Express your answers using three significant figures separated by commas. 2.A particular organ pipe can resonate at 252...
A 1.20 m long column of air in a pipe organ, that is closed on only...
A 1.20 m long column of air in a pipe organ, that is closed on only one side, plays its very low fundamental frequency. If the temperature of the air is 22.4 degC, what is that frequency?     A string of length 0.0140 m is pulled across the top of the column of air, and causes it to vibrate in its 2nd overtone, what is the velocity of the wave on the string?
What is the length of an open-pipe resonator with a fundamental frequency of 400.0Hz 400.0 Hz...
What is the length of an open-pipe resonator with a fundamental frequency of 400.0Hz 400.0 Hz ? (Assume the speed of sound is 331m/s 331 m/s .) flute is an open-pipe resonator that can produce a wavelength that is twice as long as itself. A clarinet is a closed-pipe resonator. What is the longest wavelength that a clarinet can produce? Why do the same notes sound different on different musical instruments? What is the possible number of nodes and antinodes...
#1 If the fundamental frequency of an 76 cm long guitar string is 460 Hz, what...
#1 If the fundamental frequency of an 76 cm long guitar string is 460 Hz, what is the speed of the traveling waves? #2: You have an organ pipe that resonates at frequencies of 800, 1120, and 1440 Hz but nothing between these. It may resonate at lower and higher frequencies as well. What is the fundamental frequency for this pipe?
1. If a wind instrument, such as a tuba, has a fundamental frequency of 30.1 Hz,...
1. If a wind instrument, such as a tuba, has a fundamental frequency of 30.1 Hz, what is its first overtone? It is closed at one end and the speed of sound is 334 m/s. 2. Find the length of an organ pipe closed at one end that produces a first overtone frequency of 276 Hz when air temperature is 21.3ºC . 3. A “showy” custom-built car has two brass horns that are supposed to produce the same frequency but...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT