Question

1) In the figure, charge q 1 = 2.7 × 10-6 C is placed at the...

1) In the figure, charge q 1 = 2.7 × 10-6 C is placed at the origin and charge q 2 = -4.9 × 10-6 C is placed on the x-axis, at x = -0.20 m. Where along the positive x-axis can a third charge Q = -8.3 µC be placed such that the resultant force on this third charge is zero?

2) What magnitude charge creates a 8.00 N/C electric field at a point 3.30 m away?

Homework Answers

Answer #1

***************************************************************************************************
This concludes the answers. If there is any mistake, let me know immediately and I will fix it....

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A stationary particle of charge q = 2.7 × 10-8 C is placed in a laser...
A stationary particle of charge q = 2.7 × 10-8 C is placed in a laser beam (an electromagnetic wave) whose intensity is 2.8 × 103 W/m2. Determine the maximum magnitude of the (a) electric and (b) magnetic forces exerted on the charge. If the charge is moving at a speed of 3.7 × 104 m/s perpendicular to the magnetic field of the electromagnetic wave, find the maximum magnitudes of the (c) electric and (d) magnetic forces exerted on the...
The figure shows a particle that carries a charge of q0 = -2.80 × 10-6 C....
The figure shows a particle that carries a charge of q0 = -2.80 × 10-6 C. It is moving along the +y axis at a speed of v = 4.82 × 106 m/s. A magnetic field of magnitude 3.48 × 10-5 T is directed along the +z axis, and an electric field of magnitude 112 N/C points along the -x axis. Determine (a) the magnitude and (b) direction (as an angle within x-y plane with respect to +x-axis in the...
Suppose that a charge is positioned at the origin with a magnitude of 5.5 µC, and...
Suppose that a charge is positioned at the origin with a magnitude of 5.5 µC, and that a second charge is positioned on the y-axis at y = 8.3 m and has a charge of -2.7 µC. Find the direction of the force on a 1.8 C charge located on the x-axis at x = 13.2 m. Express you answer in degrees relative to the x-axis.
A point particle with charge q = 4.9 μC is placed on the x axis at...
A point particle with charge q = 4.9 μC is placed on the x axis at x = −10 cm and a second particle of charge Q = 7.8 μC is placed on the x axis at x = +25 cm. (a) Determine the x and y components of the electric field due to this arrangement of charges at the point (x, y) = (10, 10) (the units here are centimeters). Ex_____ Ey_____ (b) Determine the magnitude and direction of...
A positive 5C charge is placed at the origin. A charge of -3 C is placed...
A positive 5C charge is placed at the origin. A charge of -3 C is placed at X = 1m. At what distance from the origin along the X axis is the electric field equal to zero?
GOAL Use the superposition principle to calculate the electric field due to two point charges. Consider...
GOAL Use the superposition principle to calculate the electric field due to two point charges. Consider the following figure. The resultant electric field  at P equals the vector sum 1 + 2, where 1 is the field due to the positive charge q1and 2 is the field due to the negative charge q2.Two point charges lie along the x-axis in the x y-coordinate plane. Positive charge q1 is at the origin, and negative charge q2 is at (0.300 m, 0). Point...
a charge (q1= +7uC) is placed on the x-axis at x= .6 m, another charge (q2=+9uC)...
a charge (q1= +7uC) is placed on the x-axis at x= .6 m, another charge (q2=+9uC) is placed on the y axis at y= .4m. A third charge,q3= -6uC and mass 5.0x 10^-8 kg, is placed at the origin. If the charge were free to move what would be the magnitude of its acceleration and the direction of its acceleration
Three charges line along the x-axis. The positive charge q1 = 15x10-6 C is at x=2.0m...
Three charges line along the x-axis. The positive charge q1 = 15x10-6 C is at x=2.0m and the positive change qs= 6.0uC is at the origin. Where must the negative charge q3 be placed on the x-axis so that the resultant electric force on it is zero? Round to 2 significant figures.
A conducting rod carrying a total charge of +3.00 µC is bent into a semicircle of...
A conducting rod carrying a total charge of +3.00 µC is bent into a semicircle of radius R = 36.0 cm, with its center of curvature at the origin (see figure below). The charge density along the rod is given by λ = λ0 sin(θ), where θ is measured clockwise from the +x axis. What is the magnitude of the electric force on a 1.00-µC charged particle placed at the origin?
A 2.18  10-9 C charge has coordinates x = 0, y = −2.00; a 2.79  10-9 C charge...
A 2.18  10-9 C charge has coordinates x = 0, y = −2.00; a 2.79  10-9 C charge has coordinates x = 3.00, y = 0; and a -5.40  10-9 C charge has coordinates x = 3.00, y = 4.00, where all distances are in cm. Determine magnitude and direction for the electric field at the origin and the instantaneous acceleration of a proton placed at the origin. (a) Determine the magnitude and direction for the electric field at the origin (measure the...