Question

A diffraction pattern is produced on a viewing screen by illuminating a long narrow slit with...

A diffraction pattern is produced on a viewing screen by illuminating a long narrow slit with light of wavelength λ. If  λ is increased and no other changes are made:

A.) the intensity at the center of the pattern decreases and the pattern expands away from the bright center

B.) the intensity at the center of the pattern does not change and the pattern expands away from the bright center

C.) the intensity at the center of the pattern increases and the pattern contracts toward the bright center

D.)the intensity at the center of the pattern does not change and the pattern contracts toward the bright center

Homework Answers

Answer #1

Whwn we increase the wavelength the bending of light decreases at the edges of the slit, which is more important to create the waves with different phases causes to interference will affect and gte reduces because of increasing wavelength. So intensity at the cnetre gets decreases because it spreads out from the centre. We wont get sharp peak at the centre.

Suppose if we send a light of blue and red color, because of blue is short wavelength it bends more than red.

Answer is A

The intensity at the center of the pattern decreases and the pattern expands away from the bright center

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1.a) A diffraction pattern is produced on a viewing screen by using a single slit with...
1.a) A diffraction pattern is produced on a viewing screen by using a single slit with blue light. Which of the following is true? 1)Using red light will broaden the pattern; widening the slit will also broaden the pattern. 2)Using red light will narrow the pattern; widening the slit will broaden the pattern. 3)Using red light will broaden the pattern; widening the slit will narrow the pattern. 4)Using red light will narrow the pattern; widening the slit will also narrow...
When you look at a single slit diffraction pattern produced on a screen by light of...
When you look at a single slit diffraction pattern produced on a screen by light of a single wavelength, you see a bright central maximum and a number of maxima on either side, their intensity decreasing with distance from the central maximum. If the frequency of the light is increased, A the pattern shrinks in size. (central maximum less wide; other maxima in closer to it) B it does not affect the size of the pattern. C the width of...
1. A single slit produces a diffraction pattern on a distant screen. Show that the separation...
1. A single slit produces a diffraction pattern on a distant screen. Show that the separation distance between the two minima on either side of the central maximum is twice as large as the separation distance between all the other neighbouring minima. Compare your result to the corresponding case for a double-slit pattern with very narrow slits. (Hint: use the formula for intensity of single slit diffraction) 2.Two ordinary lightbulbs S1 and S2 are 1m apart, each emitting light waves...
Coherent light of wavelength 600 nm is incident on a narrow slit. The diffraction pattern is...
Coherent light of wavelength 600 nm is incident on a narrow slit. The diffraction pattern is observed on a screen that is 4.00 m from the slit. On the screen the width of the central maximum of the diffraction pattern is 3.00 mm. What is the width of the slit? answer is 1.6 mm
A double slit interference pattern is created by two narrow slit spaced 0.025 mm apart on...
A double slit interference pattern is created by two narrow slit spaced 0.025 mm apart on a screen 2 m away from the slits. a. If the seventh bright fringe on the detector is 10 cm away from the central fringe, what is the wavelength of light (in nm) used in this experiment? b. What is the angle of the diffraction order?
1. monochromatic light of wavelength 540 nm from a source passes through a slit that is...
1. monochromatic light of wavelength 540 nm from a source passes through a slit that is 0.03mm wide. What is the width of the central bright fringe on the diffraction pattern formed on a screen placed at a distance of 2.00 m away from the slit? 2. Light of wavelength 500 nm is incident on a single slit of width 0.02 mm to produce a diffraction pattern with intensity 4.00×10^-4 W/m^2 at the center of a screen placed far away...
Monochromatic light of 600 nm incident on a 0.2mm wide single slit. A diffraction pattern is...
Monochromatic light of 600 nm incident on a 0.2mm wide single slit. A diffraction pattern is appeared on a screen 130cm away from the single slit. Calculate the fractional intensity I/Imax at a point on the screen 5 mm from the center of the principal maximum.
Monochromatic light of 600 nm incident on a 0.2mm wide single slit. A diffraction pattern is...
Monochromatic light of 600 nm incident on a 0.2mm wide single slit. A diffraction pattern is appeared on a screen 130cm away from the single slit. Calculate the fractional intensity I/Imax at a point on the screen 5 mm from the center of the principal maximum.
Two narrow slits are used to produce a double-slit interference pattern with monochromatic light. The slits...
Two narrow slits are used to produce a double-slit interference pattern with monochromatic light. The slits are separated by 8 mm, and the interference pattern is projected onto a screen 7 m away from the slits. The central bright fringe is at a certain spot on the screen. Using a ruler with one end placed at the central fringe, you move along the ruler passing by two more bright fringes and find that the next bright fringe is 23.5 mm...
A flat screen is located 0.43 m away from a single slit. Light with a wavelength...
A flat screen is located 0.43 m away from a single slit. Light with a wavelength of 610 nm (in vacuum) shines through the slit and produces a diffraction pattern. The width of the central bright fringe on the screen is 0.057 m. What is the width of the slit?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT