Question

Four point loads q1= -87.00 nC, q2 = 83.00 nC, q3 = 13.00 nC and q4...

Four point loads q1= -87.00 nC, q2 = 83.00 nC, q3 = 13.00 nC and q4 = -92.00 nC are in the corners of a square on the side 19.00 cm Find the work needed to bring a load q5= -57.00 nC from infinity to the center of the square.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Four charges q1, q2, q3 and q4, are placed at the corners of a square. Charges...
Four charges q1, q2, q3 and q4, are placed at the corners of a square. Charges q1 and q4 are located on opposite corners and have equal charges. Both q2 and q3 have a charge of 1.0 C. If the force on q2 is zero, what is the charge on q1? A. -1.0 C B. -0.35 C C. -0.71 C D. -0.20 C
Charges q1, q2, q3, and q4 are placed in sequential order at the corners of a...
Charges q1, q2, q3, and q4 are placed in sequential order at the corners of a square of side 200 mm. Determine the direction of the force on q4 given q1 = q3 = 5 μC, q2= -10 * 21/2 μC and q4= -5 μC.
Three point charges q1=1 μC , q2=2 μC and q3=-3 μC are located at three corners...
Three point charges q1=1 μC , q2=2 μC and q3=-3 μC are located at three corners of a square of side a=2 cm . Charge q3 is located diagonally opposed to the empty corner of the square. Calculate the electric potential created by the three charges at the empty corner of the square. Calculate the work done by the electric field of the three charges when a fourth charge q4=-4 μC moves from the center of the square to the...
Q4. Charge q1 = 2.0 nC is located at (0, 0) and charge q2 = -4.0...
Q4. Charge q1 = 2.0 nC is located at (0, 0) and charge q2 = -4.0 nC is located at (-3.0 cm, 0). Sketch a diagram of the charge distribution. What is the electric potential at point A (2.0 cm,0)? What is the electric potential at point B (3.0 cm, 0)? What is the change of electric potential from A to B? How much work is needed to move a third charge q3 = 2.0 nC from A to B?
Point charges q1=+2.00μC and q2=−2.00μC are placed at adjacent corners of a square for which the...
Point charges q1=+2.00μC and q2=−2.00μC are placed at adjacent corners of a square for which the length of each side is 3.50 cm . Point a is at the center of the square, and point b is at the empty corner closest to q2. Take the electric potential to be zero at a distance far from both charges. A point charge q3 = -5.00 μC moves from point a to point b. How much work is done on q3 by...
In the figure, the particles have charges q1 = -q2 = 150 nC and q3 =...
In the figure, the particles have charges q1 = -q2 = 150 nC and q3 = -q4 = 91 nC, and distance a = 3.9 cm. What are the (a) x and (b) y components of the net electrostatic force on particle 3?
The figure shows three charges q1, q2 and q3 situated at corners of a rectangle of...
The figure shows three charges q1, q2 and q3 situated at corners of a rectangle of sides a = 15.0 cm and b = 7.0 cm. 1) For q1 = 5.80 μC, q2 = -5.80 μC, and q3 = 2.30 μC find the electric potential at the center of the rectangle. 2) Continuing with the figure above, how much of the electric energy of the system would be expended in moving q3 to infinity while q1 and q2 remain in...
4 linear equation Q1: y=5-0.8a Q2: y=10-b Q3=Q1+Q2 Q4:y=0.4c If a+b=c, then which point does Q4...
4 linear equation Q1: y=5-0.8a Q2: y=10-b Q3=Q1+Q2 Q4:y=0.4c If a+b=c, then which point does Q4 intersects with Q3? The answer is (3.42,8.55) Want to know the step plz.
Two point charges Q1 = 30.0 nC and Q2 = -40 nC are held fixed along...
Two point charges Q1 = 30.0 nC and Q2 = -40 nC are held fixed along the x-axis. Q1 is at x = 0 and Q2 is at x = 72.0 cm. A third particle, of mass m = 2.2 x 10-6 kg, has charge Q3 = 42µC. If Q3 is released from x = 28 cm, what is its initial acceleration?
A point charge q1=4.20 nC is fixed at the origin. A second point charge q2=−7.80 nC...
A point charge q1=4.20 nC is fixed at the origin. A second point charge q2=−7.80 nC is fixed at the point x=15.0 cm. (a) Find the point on the +x axis where the electric potential is zero. (b) A third charge, q3=−2.30 nC is then placed at the point x=20.0 cm. Find the net force acting on charge q2 due to the other two charges.