Question

A flywheel with a radius of 0.360 mm starts from rest and accelerates with a constant...

A flywheel with a radius of 0.360 mm starts from rest and accelerates with a constant angular acceleration of 0.610 rad/s2

Part A

Compute the magnitude of the tangential acceleration, the radial acceleration, and the resultant acceleration of a point on its rim at the start.

Enter your answers separated with commas.

Part B

Compute the magnitude of the tangential acceleration, the radial acceleration, and the resultant acceleration of a point on its rim after it has turned through 60.0 ∘∘.

Enter your answers separated with commas.

Part C

Compute the magnitude of the tangential acceleration, the radial acceleration, and the resultant acceleration of a point on its rim after it has turned through 120 ∘∘.

Enter your answers separated with commas.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A flywheel with a radius of .340 m starts from rest and accelerates with a constant...
A flywheel with a radius of .340 m starts from rest and accelerates with a constant angular acceleration of .730 rad/ s2. A) compute the magnitude of the tangential acceleration, the radial acceleration, and the resultant acceleration of a point on its rim at the start. B) compute the magnitude of the tangential acceleration, the radial acceleration, and the resultant acceleration of a point on its rim after it has turned through 60.0. C) compute the magnitude of the tangential...
A flywheel with a radius of 0.500 m starts from rest and accelerates with a constant...
A flywheel with a radius of 0.500 m starts from rest and accelerates with a constant angular acceleration of 0.700 rad/s2 . 1.Compute the magnitude of the tangential acceleration of a point on its rim at the start. 2.Compute the magnitude of the radial acceleration of a point on its rim at the start. 3.Compute the magnitude of the tangential acceleration of a point on its rim after it has turned through 60.0 ?. 4.Compute the magnitude of the radial...
A flywheel with a radius of 0.200 m starts from rest and accelerates with a constant...
A flywheel with a radius of 0.200 m starts from rest and accelerates with a constant angular acceleration of 0.400 rad/s2 . Compute the magnitude of the radial acceleration of a point on its rim after it has turned through 60.0 ?. Compute the magnitude of the tangential acceleration of a point on its rim after it has turned through 120.0 ?. Compute the magnitude of the radial acceleration of a point on its rim after it has turned through...
A flywheel with a radius of 0.700 m starts from rest and accelerates with a constant...
A flywheel with a radius of 0.700 m starts from rest and accelerates with a constant angular acceleration of 0.500 rad/s2 . A). Compute the magnitude of the resultant acceleration of a point on its rim at the start B). Compute the magnitude of the resultant acceleration of a point on its rim after it has turned through 60.0 ∘. C). Compute the magnitude of the resultant acceleration of a point on its rim after it has turned through 120.0
A gyroscope flywheel of radius 2.05 cm is accelerated from rest at 14.1 rad/s2 until its...
A gyroscope flywheel of radius 2.05 cm is accelerated from rest at 14.1 rad/s2 until its angular speed is 2390 rev/min. (a) What is the tangential acceleration of a point on the rim of the flywheel during this spin-up process? (b) What is the radial acceleration of this point when the flywheel is spinning at full speed? (c) Through what distance does a point on the rim move during the spin-up?
A cylinder rotating about its axis with a constant angular acceleration of 1.6 rad/s^2 starts from...
A cylinder rotating about its axis with a constant angular acceleration of 1.6 rad/s^2 starts from rest at t=0. At the instant when it has turned through 0.40 radian, find the magnitude of the tangential velocity at point on the rim (radius=0.15 m)?
a flywheel of diameter 37.5 cm starts from rest and accelerates to an angular velocity of...
a flywheel of diameter 37.5 cm starts from rest and accelerates to an angular velocity of 900 rpm in 5.38 seconds. find the magnitude of the total acceleration at 1.62 seconds.
A 70.0-cm diameter flywheel is initially rotating clockwise at 100 rpm. It then undergoes a constant...
A 70.0-cm diameter flywheel is initially rotating clockwise at 100 rpm. It then undergoes a constant counterclockwise angular acceleration of 2.50 radians per square second for 5.00 seconds. a) What is the magnitude of the initial angular velocity in units of radians per second?   b) What are the magnitude and direction of the final angular velocity of the flywheel at the end of the 5.00 second interval in units of rad/s?    c) What is the magnitude of the net angle...
A uniform disk with mass 37.0 kg and radius 0.240 m is pivoted at its center...
A uniform disk with mass 37.0 kg and radius 0.240 m is pivoted at its center about a horizontal, frictionless axle that is stationary. The disk is initially at rest, and then a constant force 26.5 N is applied tangent to the rim of the disk. a) What is the magnitude v of the tangential velocity of a point on the rim of the disk after the disk has turned through 0.170 revolution? b) What is the magnitude a of...
An ultracentrifuge accelerates from rest to 100,000 rpm in 2.80 min. (a) What is its angular...
An ultracentrifuge accelerates from rest to 100,000 rpm in 2.80 min. (a) What is its angular acceleration in rad/s2? rad/s2 (b) What is the tangential acceleration, in m/s2, of a point 11.80 cm from the axis of rotation? m/s2 (c) What is the radial acceleration, in m/s2, of this point at full rpm? m/s2 (d) Express this radial acceleration as a multiple of g. g
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT