Question

Light with an intensity of 1 kW/m2 falls normally on a surface of the Earth. Find...

Light with an intensity of 1 kW/m2 falls normally on a surface of the Earth. Find the electric field of the power density incident upon Earth's surface, express it in V/m

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The intensity of sunlight striking Earth's upper atmosphere (called the solar constant) is 1.35 kW/m2. (a)...
The intensity of sunlight striking Earth's upper atmosphere (called the solar constant) is 1.35 kW/m2. (a) Find Erms and Brms due to the sun at the upper atmosphere of Earth. Erms =  V/m Brms =  µT (b) Find the average power output of the sun. W (c) Find the intensity at the surface of the sun. W/m2 (d) Find the radiation pressure at the surface of the sun. Pa
The light at the Earth from a certain star has an intensity of about 22×10-8W/m2. If...
The light at the Earth from a certain star has an intensity of about 22×10-8W/m2. If the star emits radiation with the same power as our Sun, how far away is it from Earth? NOTE: Use 1000 W/m^2 as the intensity of the Sun at the Earth!
1. An ultraviolet light with wavelength 380 nm and intensity 1.00 W/m2 falling on 1.00 cm2...
1. An ultraviolet light with wavelength 380 nm and intensity 1.00 W/m2 falling on 1.00 cm2 area of Lithium surface. If 0.9 % of the incident photons produces photoelectrons, how many photons emitted per second. 2.Calculate maximum kinetic energy of ejected photoelectron when 320 nm light falls on Silver surface.
Light of wavelength 400 nm and intensity 10-2 W/m2 is incident on a detector surface. The...
Light of wavelength 400 nm and intensity 10-2 W/m2 is incident on a detector surface. The area of the detector is 86 cm2. What is the rate of photons, incident on the detector?
At the surface of the Earth, the intensity of direct sunlight is roughly 1.4 kW per...
At the surface of the Earth, the intensity of direct sunlight is roughly 1.4 kW per square meter. Consider a solar array on the top of someone’s house having ten solar panels each with area 0.5 m2 . Let’s assume for simplicity that all sunlight at the Earth’s surface has wavelength 500 nm; how many photons hit the whole solar array over one hour of direct sunlight?
If you know that the Solar intensity at Earth is S​0​ = 1361 W/m2​ ​, what...
If you know that the Solar intensity at Earth is S​0​ = 1361 W/m2​ ​, what is the Electric field strength of Solar radiation at Pluto? (you need to know the Sun to Earth distance a​E​ =1.5x101​ 1​mandtheSuntoPlutodistancea​P​ =5.9x101​ 2​ m)
Unpolarized light of intensity 400 W/m2 is normally incident on a system of two polarizers. The...
Unpolarized light of intensity 400 W/m2 is normally incident on a system of two polarizers. The first polarizer's transmission axis is oriented vertically and the second polarizer's transmission axis makes an angle θ with respect to the vertical. The light emerging from the system has an intensity of 150 W/m2. What is the angle θ of the second polarizer. A. 41 degrees B. 52 degrees C. 30 degrees D. 68 degrees
Please answer quickly Initially, unpolarized light with an intensity of 42.0 W/m2 is normally incident on...
Please answer quickly Initially, unpolarized light with an intensity of 42.0 W/m2 is normally incident on three polarizers consecutively. Polarizer A is rotated - 20' with respect to vertical, Polarizer B is rotated +10° with respect to horizontal and polarizer C is rotated +35" with respect to vertical. What is the intensity of the light after passing through all three polarizers? A 11.4 W/m2 B 12.1 W/m2 C 24.1 W/m2 D 12.9 W/m2 E 106 W/m2
An AM radio transmitter broadcasts 46.0 kW of power uniformly in all directions. (a) Assuming all...
An AM radio transmitter broadcasts 46.0 kW of power uniformly in all directions. (a) Assuming all of the radio waves that strike the ground are completely absorbed, and that there is no absorption by the atmosphere or other objects, what is the intensity (in W/m2) 28.0 km away? (Hint: Half the power will be spread over the area of a hemisphere.) W/m2 (b) What is the maximum electric field strength (in V/m) at this distance? V/m
Thanks So much in advance! 1. Unpolarized light with an intensity of 510 W / m2...
Thanks So much in advance! 1. Unpolarized light with an intensity of 510 W / m2 is incident on a polarizer with an unknown axis. The light then passes through a second polarizer with has an axis which makes an angle of 77.5° with the vertical. After the light passes through the second polarizer, its intensity has dropped to 188 W / m2. What is the angle between the axes of the polarizers? 2.Unpolarized light of intensity I0 is incident...