Question

A particle that is attached to a vertical spring is pulled down a distance of 4.0cm...

A particle that is attached to a vertical spring is pulled down a distance of 4.0cm below its equilibrium position and is released from rest. The initial upward acceleration of the particle is 0.30 m/s2. a) What is the period of the ensuing oscillations? b) With what velocity does the particle pass through its equilibrium position? c) What is the equation of motion for the particle (choose upward direction to be positive).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A block attached to a horizontal spring is pulled to the right a distance of 19.0...
A block attached to a horizontal spring is pulled to the right a distance of 19.0 cm from the equilibrium position. The block is released and the block-spring system undergoes SHM at f = 1.28 Hz. Assuming that positive is to the right, determine at 0.300 s after release the block's displacement, velocity, and acceleration. Neglect friction. (Indicate the direction with the sign of your answer.)
A particle with mass 2.61 kg oscillates horizontally at the end of a horizontal spring. A...
A particle with mass 2.61 kg oscillates horizontally at the end of a horizontal spring. A student measures an amplitude of 0.923 m and a duration of 129 s for 65 cycles of oscillation. Find the frequency, ?, the speed at the equilibrium position, ?max, the spring constant, ?, the potential energy at an endpoint, ?max, the potential energy when the particle is located 68.5% of the amplitude away from the equiliibrium position, ?, and the kinetic energy, ?, and...
A block of mass m = 0.53 kg attached to a spring with force constant 119...
A block of mass m = 0.53 kg attached to a spring with force constant 119 N/m is free to move on a frictionless, horizontal surface as in the figure below. The block is released from rest after the spring is stretched a distance A = 0.13 m. (Indicate the direction with the sign of your answer. Assume that the positive direction is to the right.) The left end of a horizontal spring is attached to a vertical wall, and...
A metal cylinder with a mass of 1.20 kg is attached to a spring and is...
A metal cylinder with a mass of 1.20 kg is attached to a spring and is able to oscillate horizontally with negligible friction. The cylinder is pulled to a distance of 0.200 mfrom its equilibrium position, held in place with a force of 17.0 N, and then released from rest. It then oscillates in simple harmonic motion. (The cylinder oscillates along the x-axis, where x = 0 is the equilibrium position.) (a) What is the spring constant (in N/m)? _____...
A block of mass m = 1.5 kg is attached to a massless, frictionless vertical spring...
A block of mass m = 1.5 kg is attached to a massless, frictionless vertical spring and stretches the spring by an amount y0 = 0.15m a)find the spring constant k of the spring b) the block is then pulled down by an additional 0.05m below its equilibrium position and is released. express the position of the block during its resulting simple harmonic motion using the equation y(t) = ymcos(wt+@). c) find the maximum acceleration fo the block A(m). d)...
A mass of 4.00kg on a spring is pulled a distance of 0.250 m from equilibrium...
A mass of 4.00kg on a spring is pulled a distance of 0.250 m from equilibrium and then released from rest. It takes 0.125s to make a first pass through the equilibrium position. a. what is the period and spring constant for this system? b. what is the total energy of the system? c. what is the kinetic energy of the system as it passes through the equalibrium position? d. where is the mass 1.5s after it is released?
When a 0.350 kg package is attached to a vertical spring and lowered slowly, the spring...
When a 0.350 kg package is attached to a vertical spring and lowered slowly, the spring stretches 12.0cm. The package is now displaced from its equilibrium position and undergoes simple harmonic oscillations when released. What is the period of the oscillations? a) Draw a diagram representing the scenario b) Solve the equation symbolically (without numbers) c) Solve the equation with numbers d) State any relevant concepts
A 3.30-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal...
A 3.30-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal force of 21.0 N is required to hold the object at rest when it is pulled 0.200 m from its equilibrium position (the origin of the x axis). The object is now released from rest from this stretched position, and it subsequently undergoes simple harmonic oscillations. (a) Find the force constant of the spring. N/m (b) Find the frequency of the oscillations. Hz (c)...
A mass is suspended on a spring, pulled downward from its equilibrium position, and released. Assume...
A mass is suspended on a spring, pulled downward from its equilibrium position, and released. Assume that t = 0 when the spring is released, and the frequency of oscillation is w. Assume a vertical coordinate system in which the coordinate y points upward (see diagram at left). Match the following physical quantities with their functional form. Vertical Acceleration d^2y/dt^2 Vertical Velocity dy/dt Vertical position y Total Energy    A. cos wt B. -sin wt C. Constant D. sin wt...
A 1.50-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal...
A 1.50-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal force of 28.0 N is required to hold the object at rest when it is pulled 0.200 m from its equilibrium position (the origin of the x axis). The object is now released from rest from this stretched position, and it subsequently undergoes simple harmonic oscillations. a.)Find the force constant of the spring. b.)Find the frequency of the oscillations. c.)Find the maximum speed of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT