Question

Two cars drive on a straight highway. At time t=0, car 1 passes mile marker 0...

Two cars drive on a straight highway. At time t=0, car 1 passes mile marker 0 traveling due east with a speed of 20.0 m/s . At the same time, car 2 is 1.0 km east of mile marker 0 traveling at 26.0 m/s due west. Car 1 is speeding up with an acceleration of magnitude 0.30 m/s2 , and car 2 is slowing down with an acceleration of magnitude 0.50 m/s2 . At what time do the cars pass next to one another? Express your answer using two significant figures.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Sally is driving along a straight highway. At t = 0, when she is moving in...
Sally is driving along a straight highway. At t = 0, when she is moving in the +x direction at 10 m/s, she passes a signpost at x = 50 m. Her acceleration as a function of time is ax = 2.0 m/s2 – (0.10 m/s3)t . (a) Find her velocity and position x as a function of time. (b) When is her velocity greatest? (c) What is the maximum velocity? (d) Where is the car when it reaches that...
A baseball player hits a line drive. Just before the ball is struck, it is moving...
A baseball player hits a line drive. Just before the ball is struck, it is moving east at a speed of 40.8 m/s (91 mi/h). Just after contact with the bat, 1.08 10-3 s later, the ball is moving west at a speed of 49 m/s (110 mi/h). Find the ball's average acceleration. magnitude? An elevator is initially moving upward at a speed of 11.16 m/s. The elevator experiences a constant downward acceleration of magnitude 4.20 m/s2 for 3.06 s....
A car is traveling west at 22.5 m/s when it turns due south and accelerates to...
A car is traveling west at 22.5 m/s when it turns due south and accelerates to 25.0 m/s, all during a time of 8.00 s. Calculate the magnitude of the car's average acceleration (in m/s2).
At t = 0, one toy car is set rolling on a straight track with initial...
At t = 0, one toy car is set rolling on a straight track with initial position 17.0 cm, initial velocity -2.7 cm/s, and constant acceleration 2.70 cm/s2. At the same moment, another toy car is set rolling on an adjacent track with initial position 9.5 cm, initial velocity 5.30 cm/s, and constant zero acceleration. (a) At what time, if any, do the two cars have equal speeds? (Enter NA if the cars never have equal speeds.) s (b) What...
On a horizontal road, a car is traveling West at a constant speed of 11.4 m/s...
On a horizontal road, a car is traveling West at a constant speed of 11.4 m/s . After 16 s , it has rounded a corner and is now heading North at a constant speed of 16.0 m/s . What is the magnitude of the car's average acceleration during this 16 s time interval? 0.29 m/s2 1.2 m/s2 0 m/s2 1.7 m/s2
Two cars collide at an icy intersection and stick together afterward. The first car has a...
Two cars collide at an icy intersection and stick together afterward. The first car has a mass of 1050 kg and was approaching at 9.00 m/s due south. The second car has a mass of 800 kg and was approaching at 20.0 m/s due west. (a) Calculate the final velocity of the cars. (Note that since both cars have an initial velocity, you cannot use the equations for conservation of momentum along the x-axis and y-axis; instead, you must look...
Two-car, 2-D collision. Two cars with masses m1 = 1200 kg and m2 = 1500 kg...
Two-car, 2-D collision. Two cars with masses m1 = 1200 kg and m2 = 1500 kg are approaching an intersection. Car 1 has a velocity v1 = 15.0 m/s towards the east and car 2 has a velocity v2 = 20.0 m/s towards the north. The two cars reach the intersection at the same time and collide and lock bumpers and after the collision travel as a single wreckage. (a) What is the magnitude and direction of their velocity after...
1. Over a time interval of 2.20 years, the velocity of a planet orbiting a distant...
1. Over a time interval of 2.20 years, the velocity of a planet orbiting a distant star reverses direction, changing from +23.7 km/s to -24.2 km/s. Find (a) the total change in the planet's velocity (in m/s) and (b) its average acceleration (in m/s2) during this interval. Include the correct algebraic sign with your answers to convey the directions of the velocity and the acceleration. 2.  A car is traveling at a constant speed of 27.2 m/s on a highway. At...
Two cars moving with same speed 10 m/s but in the opposite directions pass each other...
Two cars moving with same speed 10 m/s but in the opposite directions pass each other at t=0. At that instant they both start to slow down with the same magnitude of acceleration 2 m / s2 1-) What ist the maximum distance between the cars ? How long does it take them to be at the same position again ? 2-) Plot the position vs. time graph of the cars qualitatively.
Two identical cars are traveling in long straight tracks placed side by side. A rope (which...
Two identical cars are traveling in long straight tracks placed side by side. A rope (which can be any length necessary) connects the centers of the two cars (ignore the dimensions of the cars). The positions of the cars change as r1= (2t^3+ 3t^2–10) m and r2= (5t^2–3t–10) m, where t is measured in seconds, for car 1 and car 2 respectively. Time begins being recorded when the rope is perpendicular to the track. The centers of the cars have...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT