Question

A glider of mass m1 = 8 kg has a velocity v1i = +2 m/s before...

A glider of mass m1 = 8 kg has a velocity v1i = +2 m/s before colliding with a second glider of mass m2 = 4 kg, moving with velocity v2i = -4 m/s. After the collision the first glider has a velocity of v1f = -1 m/s. This collision is

Elastic

Partially inelastic

Totally inelastic

Impossible

A glider of mass m1 = 8 kg has a velocity v1i = +2 m/s before colliding with a second glider of mass m2 = 4 kg, moving with velocity v2i = -4 m/s. After the collision the first glider has a velocity of v1f = -1 m/s. The final velocity v2f of the second glider is

v2f = +2 m/s

v2f = -2 m/s

v2f = +4.8 m/s

v2f = -4.8 m/s

Homework Answers

Answer #1

Question 1

Given m1 =8kg , v1i = 2m/s and v1f =-1m/s

m2 =4kg , v2i = -4m/s and v2f = ?

First find final velocity of glider 2

Consider conservation of momentum

------------------

Check if KE is conserved

------------------------------

--------------------------

so

Since KE is not conserved and both objects are moving separately after collision

ANSWER: Partially Inelastic

===============================

Question 2

Values are same as Question 1

Use conservation of Momentum

Given m1 =8kg , v1i = 2m/s and v1f =-1m/s

m2 =4kg , v2i = -4m/s and v2f = ?

First find final velocity of glider 2

Consider conservation of momentum

ANSWER:

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A car of mass m1 = 2000.0 kg is moving at speed v1i = 20.0m/s towards...
A car of mass m1 = 2000.0 kg is moving at speed v1i = 20.0m/s towards East. A truck of mass m2 = 5000.0 kg is moving at speed v2i = 10.0m/s towards North. They collide at an intersection and get entangled (complete inelastic collision). 1. What is the magnitude and direction of the final velocity of the entangled automobiles? 2. How much kinetic energy is lost in the collision. That is, calculate the change in the kinetic energy of...
A block of mass m=1.4 kg, moving on frictionless surface with a speed v1i=5.3 m/s, makes...
A block of mass m=1.4 kg, moving on frictionless surface with a speed v1i=5.3 m/s, makes a perfectly elastic collision with a block of mass M at rest, see the sketch. After the collision, the 1.4 kg block recoils with a speed of v1f=0.3 m/s. What is the speed of block M after the collision? A. v2f=4.8 m/s B. v2f=5.2 m/s C. v2f=3.4 m/s D. v2f=5.0 m/s
A car with mass M1 “ 2700 kg collides with a car of mass M2 “...
A car with mass M1 “ 2700 kg collides with a car of mass M2 “ 3200 kg. Before the collision car 1 has velocity ⃗v1i “p6m{s, ́14m{sqandcar2hasvelocity⃗v2i “p15m{s,0q. (a) What is the total momentum of the two cars? (6 pts) (b) Immediately after the collision the velocity of car 1 is ⃗v1f “ p14 m{s, ́6 m{sq. What is the velocity ⃗v2f of car 2 after the collision? (9 pts)
Suppose that we have two masses, m1 and m2, traveling at initial velocities v1i and v2i...
Suppose that we have two masses, m1 and m2, traveling at initial velocities v1i and v2i . After they collide, they will have velocities v1f and v2f . The collision will happen along a straight line, and there are no external forces involved. Answer all exercises. Exercise 2 For the collision above what is are the initial and final kinetic energies? Is kinetic energy conserved in the collision? Exercise 3 Let m1 = 500 g, m2 = 500 g, v1i...
Two gliders with different masses (m1 and m2) are placed on a frictionless air track and...
Two gliders with different masses (m1 and m2) are placed on a frictionless air track and given initial velocities v1i and v2i. They elastically collide, bouncing off each other. (a) Determine the equations for the final velocity of each glider. (b) For m1 = 0.51 kg, m2 = 0.98 kg, v1i=1.5 im/s, and v2i=-2.2 im/s, find v1f and v2f.
A ball, m1 = 0.1 kg, having initial velocity v1i = 0.5 m/s hits a stationary...
A ball, m1 = 0.1 kg, having initial velocity v1i = 0.5 m/s hits a stationary ball in a glancing collision. After the collision the balls have final speeds v1f = 0.4 m/s and v2f = 0.2 m/s and ball 1 bounces back at an angle of 110 degrees relative to its incident trajectory. a) Sketch diagrams of the balls before and after the collision. Include a co-ordinate system and label all relevant angles and velocities. b) Write down algebraic...
A car having mass M1= 1000 Kg moving initially at V1i= 60 m/s collides with a...
A car having mass M1= 1000 Kg moving initially at V1i= 60 m/s collides with a car having mass M2= 3000 Kg that was moving initially at V2i = 20m/s. After the inelastic collision, the cars stick and move together. The final velocity of the two cars just after collision is Vf  =_______ m/s Part A 40 20 60 30 Part B If the collision time is t = 0.25 seconds, the force exerted on the car having mass M2= 3000...
A block of mass m1 is traveling to the right with a velocity of v1i. A...
A block of mass m1 is traveling to the right with a velocity of v1i. A block of mass m2 is traveling to the left at v2i. Both are on a frictionless, flat surface. Let the speed v2i = (1/2)v1i and m2 = 3m1. The two blocks collide elastically. (1) What is the final velocity of block m1 (in terms of v1,i)? (2) What is the final velocity of block m2 (in terms of v1,i)? (3) What is the change...
A block with mass m1 = 10 kg moving at 5 m/s collides with another block...
A block with mass m1 = 10 kg moving at 5 m/s collides with another block with mass m2 = 20 kg moving the other way at 1 m/s. The two blocks stick together after the collision. (a) What is their common final velocity, vf ? (b) The blocks collide again, this time elastically. Assume that the outgoing blocks move away from the collision along the initial line of approach. What are the final velocities, v1f and v2f ?
Consider an elastic collision in one dimension that involves objects of mass m1=2 kg and m2=11.3...
Consider an elastic collision in one dimension that involves objects of mass m1=2 kg and m2=11.3 kg. The larger mass is initially at rest, and the smaller one has an initial velocity of 16 m/s. Find the final velocities of the two objects after the collision. v1f v2f
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT