Question

On an icy winter day, the coefficient of friction between the tires of a car and...

On an icy winter day, the coefficient of friction between the tires of a car and a roadway is reduced to 1/4 its value on a dry day. As a result, the maximum speed vmax dry at which the car can safely negotiate a curve of radius R is reduced. The new value for this speed is what percentage of its value on a dry day?

Homework Answers

Answer #1

Let’s first obtain the formula for maximum safe speed of a car when it is dry day. In the case of a motion of the car along a flat curved road, the force of friction provides the necessary centripetal force:

Therefore, the new value for this speed is 50% of its value on a dry day

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The friction between the tires of a car and a flat road provides the centripetal force...
The friction between the tires of a car and a flat road provides the centripetal force for a turn. For a 1800 kg car travelling at 25 m/s on a curve of radius 100 m: a. Calculate the normal force on the car from the road. b. Calculate the centripetal force required to turn the car safely. c. Calculate the minimum coefficient of static friction between the tires and road for the car to turn safely. d. Ice on the...
a 900kg car moving on a flat, horizontal road negotiates a curve whose radius is 500m....
a 900kg car moving on a flat, horizontal road negotiates a curve whose radius is 500m. If the coefficient of static friction between the tires and the dry pavement is 0.523, find the maximum speed the car can have to make the turn successfully.
A car rounds a 50 meter radius curve that is banked such that a car rounding...
A car rounds a 50 meter radius curve that is banked such that a car rounding it does not need friction at a speed of 12 m/s. What is the bank angle of the road? The coefficient of kinetic friction between the tires and the road is 0.5 and the coefficient of static friction between the tires and the road is 0.8. If the same road were flat (instead of banked), determine the maximum speed with which the coar could...
An 800-kg race car can drive around an unbanked turn with coefficient of static friction between...
An 800-kg race car can drive around an unbanked turn with coefficient of static friction between the track and the car's tires of 0.02. The turn has a radius of curvature of 150 m. Air flowing over the car's wing exerts a downward-pointing force of 10 000 N on the car. Calculate the maximum speed without slipping.
A curve at a racetrack has a radius of 600 m and is banked at an...
A curve at a racetrack has a radius of 600 m and is banked at an angle of 7.0 degrees. On a rainy day, the coefficient of friction between the cars' tires and the track is 0.50. Part A. What is the maximum speed at which a car could go around this curve without slipping? Give answer as vmax= and m/s
The coefficient of kinetic friction between rubber tires and wet pavement is 0.50. The brakes are...
The coefficient of kinetic friction between rubber tires and wet pavement is 0.50. The brakes are applied to a 1750kg car travelling 27.8m/s and the car skids to a stop. What is the size and direction of the force of friction that the road exerts on the car? What would be the size and direction of the acceleration on the car? How far would the car travel before stopping? If the tires of the car did not skid, the coefficient...
You live in a town with lots of hills. The coefficient of static friction between tires...
You live in a town with lots of hills. The coefficient of static friction between tires and pavement is 0.15. What is the maximum incline (in degrees) of a hill you can park on and expect to find your car where you left it?
A curve of radius 20 m is banked so that a 1100 kg car traveling at...
A curve of radius 20 m is banked so that a 1100 kg car traveling at 30 km/h can round it even if the road is so icy that the coefficient of static friction is approximately zero. The acceleration of gravity is 9.81 m/s 2 . Find the minimum speed at which a car can travel around this curve without skidding if the coefficient of static friction between the road and the tires is 0.3. Answer in units of m/s.
A curve of radius 30 m is banked so that a 950-kg car traveling at 25...
A curve of radius 30 m is banked so that a 950-kg car traveling at 25 miles per hour can round it even if the road is so icy that the coefficient of static friction is approximately zero. You are commissioned to tell the local police the range of speeds at which a car can travel around this curve without skidding. Neglect the effects of air drag and rolling friction. If the coefficient of static friction between the snowy road...
A 1000-kg car is traveling around a curve having a radius of 100 m that is...
A 1000-kg car is traveling around a curve having a radius of 100 m that is banked at an angle of 15.0°. If 30m/s is the maximum speed this car can make the curve without sliding, what is the coefficient of friction between the road and the tires?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT