Question

An electron with kinetic energy of 5 x 10^−23 J moves in a circular path of...

An electron with kinetic energy of 5 x 10^−23 J moves in a circular path of radius =2.0 cm inside a solenoid. The magnetic field of the solenoid is perpendicular to the plane of the electron's path. The mass of the electron= 9.1 x 10^−31 kg.

a) Find the strength of the magnetic field inside the solenoid.

b) Find the current in the solenoid if the solenoid has 25 turns per centimeter.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An electron moves at a speed of 19000 m/s in a circular path of radius 2.2...
An electron moves at a speed of 19000 m/s in a circular path of radius 2.2 cm in a solenoid. The magnetic field of the solenoid is perpendicular to the plane of the electron’s path. The permeability of free space is 4 π × 10−7 T · m/A. Find the strength of the magnetic field inside the solenoid. Answer in units of µT. Find the current in the solenoid if it has 22 turns/cm. Answer in units of mA.
An electron moves in a circular path perpendicular to a magnetic field of magnitude 0.265 T....
An electron moves in a circular path perpendicular to a magnetic field of magnitude 0.265 T. If the kinetic energy of the electron is 4.50 ✕ 10−19 J, find the speed of the electron and the radius of the circular path. (a) the speed of the electron m/s (b) the radius of the circular path μm
an electron moves with a speed of 8x10 ^ 3 m / s in a circular...
an electron moves with a speed of 8x10 ^ 3 m / s in a circular path of 1cm radius within a solenoid of 2cm radius and 8 cm in length. Find a) the intensity of the magnetic field inside the solenoid, b) the current flowing in it if it has 20 turns per cm and c) its inductance. d) draw a picture indicating the direction of the current through the solenoid, the generated magnetic field and the electron rotation
A proton moves on a circular path in a uniform magnetic field that is perpendicular to...
A proton moves on a circular path in a uniform magnetic field that is perpendicular to the plane of the circle. Calculate the radius of the circle, if the proton's kinetic energy is K = 0.23 MeV and magnetic field strength is 1.0T.
Conceptual Example 4 provides background pertinent to this problem. An electron has a kinetic energy of...
Conceptual Example 4 provides background pertinent to this problem. An electron has a kinetic energy of 2.5 × 10-17 J. It moves on a circular path that is perpendicular to a uniform magnetic field of magnitude 5.5 × 10-5 T. Determine the radius of the path.
An electron of kinetic energy 1.73 keV circles in a plane perpendicular to a uniform magnetic...
An electron of kinetic energy 1.73 keV circles in a plane perpendicular to a uniform magnetic field. The orbit radius is 21.2 cm. Find (a) the electron's speed, (b) the magnetic field magnitude, (c) the circling frequency, and (d) the period of the motion.
In a nuclear experiment a proton with kinetic energy 4.0 MeV moves in a circular path...
In a nuclear experiment a proton with kinetic energy 4.0 MeV moves in a circular path in a uniform magnetic field. If the magnetic field is B = 1.6 T what is the radius of the orbit? What energy must an alpha particle (q = +2e, m = 4.0 u) and a deuteron (q = +e, m = 2.0 u) have if they are to circulate in the same orbit? Energy of the alpha? (MeV) Energy of the deuteron?
A cosmic ray electron moves at 5.25 × 106 m/s perpendicular to the Earth’s magnetic field...
A cosmic ray electron moves at 5.25 × 106 m/s perpendicular to the Earth’s magnetic field at an altitude where the field strength is 1.0 × 10-5 T.What is the radius, in meters, of the circular path the electron follows?
A positive charged particle carries 0.9 µC and moves with a kinetic energy of 0.06 J....
A positive charged particle carries 0.9 µC and moves with a kinetic energy of 0.06 J. It travels through a uniform magnetic field of B = 0.4 T. What is the mass of the particle (in kg )if it moves in the magnetic field in circular manner with a radius r = 4.1 m?
(a) At what speed (in m/s) will a proton move in a circular path of the...
(a) At what speed (in m/s) will a proton move in a circular path of the same radius as an electron that travels at 7.00 ✕ 10^6 m/s perpendicular to the Earth's magnetic field at an altitude where the field strength is 1.05 ✕ 10^−5 T? (b) What would the radius (in m) of the path be if the proton had the same speed as the electron? (c) What would the radius (in m) be if the proton had the...