Question

A block with mass m =7.5 kg is hung from a vertical spring. When the mass...

A block with mass m =7.5 kg is hung from a vertical spring. When the mass hangs in equilibrium, the spring stretches x = 0.25 m. While at this equilibrium position, the mass is then given an initial push downward at v = 4.1 m/s. The block oscillates on the spring without friction.

After t = 0.3 s what is the speed of the block?

What is the magnitude of the maximum acceleration of the block?

At t = 0.3 s what is the magnitude of the net force on the block?

Where is the potential energy of the system the greatest?

At the highest point of the oscillation.

At the new equilibrium position of the oscillation.

At the lowest point of the oscillation.

Homework Answers

Answer #1

Now we can use the velocity equation

v(t) = - A w sin (wt - phi) [eq 1}

w = sqrt(k/m) = 5.48 rad/s

Hmmmml...to find A, I guess we have to us conservation of energy,

(1/2) k x^2 = (1/2) m v^2

x^2 = v^2 * m/k

x = sqrt (v^2 * m / k)

x = A = 0.74814 m

Now plug everything into eq 1

v = - (0.7481) * (5.48rad/s) sin (5.48rad/s*0.3sec - pi/2)

v = 4.1m/s



4)

kA = ma,

a = kA/m

a = (294.3N/m) (0.7481/ 7.5kg)' . Kx=mg , k =mg/x

a = 29.4 m/s^2

5) the net force is the spring force at t = 0.3sec.

Fnet = k * x, so we just need x when t = 0.3sec.

x(t) = - A cos (wt - phi)

x = (0.7481m) cos (5.48rad/s*0.3sec - pi/2)

x = 0.62m

Fnet = k * x = 182.40 N

Potential energy will be highest at above equalibrium position.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A block with mass m =6.2 kg is hung from a vertical spring. When the mass...
A block with mass m =6.2 kg is hung from a vertical spring. When the mass hangs in equilibrium, the spring stretches x = 0.22 m. While at this equilibrium position, the mass is then given an initial push downward at v = 4.6 m/s. The block oscillates on the spring without friction. What is the spring constant of the spring? 2) What is the oscillation frequency? After t = 0.32 s what is the speed of the block? What...
A block with mass m =7.3 kg is hung from a vertical spring. When the mass...
A block with mass m =7.3 kg is hung from a vertical spring. When the mass hangs in equilibrium, the spring stretches x = 0.29 m. While at this equilibrium position, the mass is then given an initial push downward at v = 5 m/s. The block oscillates on the spring without friction. 1) What is the spring constant of the spring? N/m Submit 2) What is the oscillation frequency? Hz Submit 3) After t = 0.45 s what is...
A block with mass m =7.1 kg is hung from a vertical spring. When the mass...
A block with mass m =7.1 kg is hung from a vertical spring. When the mass hangs in equilibrium, the spring stretches x = 0.24 m. While at this equilibrium position, the mass is then given an initial push downward at v = 4.5 m/s. The block oscillates on the spring without friction. 1) What is the spring constant of the spring? 2) What is the oscillation frequency? 3) After t = 0.38 s what is the speed of the...
A block with mass m =6.7 kg is hung from a vertical spring. When the mass...
A block with mass m =6.7 kg is hung from a vertical spring. When the mass hangs in equilibrium, the spring stretches x = 0.27 m. While at this equilibrium position, the mass is then given an initial push downward at v = 4.5 m/s. The block oscillates on the spring without friction. 1. What is the spring constant of the spring? 2. What is the oscillation frequency? 3. After t = 0.46 s what is the speed of the...
When a 0.411 kg mass is hung from a certain spring it stretches 0.148 m to...
When a 0.411 kg mass is hung from a certain spring it stretches 0.148 m to its equilibrium position at point P. If this mass is pulled down 0.139 m from point P and released, what is the magnitude of the velocity in m/s of this mass 0.041 m from point P?
When a 0.427 kg mass is hung from a certain spring it stretches 0.122 m to...
When a 0.427 kg mass is hung from a certain spring it stretches 0.122 m to its equilibrium position at point P. If this mass is pulled down 0.151 m from point P and released, what is the magnitude of the velocity in m/s of this mass 0.0392 m from point P? A 1.42 m3 piece of wood with a density of 0.805 kg/m3 floats in the ocean where the density of the water is 1.027 kg/m3. What is the...
A block of mass m = 1.5 kg is attached to a massless, frictionless vertical spring...
A block of mass m = 1.5 kg is attached to a massless, frictionless vertical spring and stretches the spring by an amount y0 = 0.15m a)find the spring constant k of the spring b) the block is then pulled down by an additional 0.05m below its equilibrium position and is released. express the position of the block during its resulting simple harmonic motion using the equation y(t) = ymcos(wt+@). c) find the maximum acceleration fo the block A(m). d)...
a) A block with a mass of 0.600 kg is connected to a spring, displaced in...
a) A block with a mass of 0.600 kg is connected to a spring, displaced in the positive direction a distance of 50.0 cm from equilibrium, and released from rest at t = 0. The block then oscillates without friction on a horizontal surface. After being released, the first time the block is a distance of 15.0 cm from equilibrium is at t = 0.200 s. What is the block's period of oscillation? _______ s b) A block with a...
When a small mass of 120g is attached to a vertical spring, the spring stretches by...
When a small mass of 120g is attached to a vertical spring, the spring stretches by 8.00cm where the small mass hangs at rest. The mass is then pulled down 3.00cm from its rest position and released so that the mass oscillates up and down. What maximum speed does the mass have during its oscillation? ANS: 33.2 cm/s
A block with a mass of 0.600 kg is connected to a spring, displaced in the...
A block with a mass of 0.600 kg is connected to a spring, displaced in the positive direction a distance of 50.0 cm from equilibrium, and released from rest at t = 0. The block then oscillates without friction on a horizontal surface. After being released, the first time the block is a distance of 25.0 cm from equilibrium is at t = 0.200 s. a.What is the block's period of oscillation? _______ s b.What is the the numerical value...