Question

A pulley, with a rotational inertia of 1.7 ✕ 10−3 kg · m2 about its axle...

A pulley, with a rotational inertia of 1.7 ✕ 10−3 kg · m2 about its axle and a radius of 11 cm, is acted on by a force applied tangentially at its rim. The force magnitude varies in time as F = 0.50t + 0.30t2, where F is in newtons and t in seconds. The pulley is initially at rest.

At t = 4.0 s what is its angular velocity (in rad/s)?

Sample submission: 456

Homework Answers

Answer #1

Inertia of pulley = 1.7 x 10-3 kg.m2

Radius of the pulley = r = 11 cm = 0.11 m

Force acting on the pulley = F = 0.5t + 0.3t2

Initial angular velocity = 1 = 0 rad/s

Angular velocity after 4 sec = 2

Time period = T = 4 sec

Torque =

Angular acceleration =

= Fr

= I

Fr = I

(0.5t + 0.3t2)(0.11) = (1.7x10-3)

= 32.353t + 19.411t2

d = (32.353t + 19.411t2)dt

Integrating we get,

= 64.706t2 + 58.233t3 + C

At t=0sec, =1=0 rad/s

Therefore C=0

= 64.706t2 + 58.233t3

At t=4sec =2

2 = 64.706(4)2 + 58.233(4)3

2 = 4762.21 rad/s

Angular velocity at t=4sec = 4762.21 rad/s

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The angular momentum of a flywheel having a rotational inertia of 0.240 kg m2 about its...
The angular momentum of a flywheel having a rotational inertia of 0.240 kg m2 about its axis decreases from 5.70 to 0.60 kg m2/s in 1.80 s. What is the average torque acting on the flywheel about its central axis during this period? 2) Assuming a uniform angular acceleration, through what angle will the flywheel have turned?(rad) 3) How much work was done on the wheel? 4) What is the average power of the flywheel?
A car's wheel has a rotational inertia of 2.8 kg m2. Working in a coordinate system...
A car's wheel has a rotational inertia of 2.8 kg m2. Working in a coordinate system where counterclockwise is positive, answer the following questions. Treat parts a, b, and c as stand-alone questions; the response from one is not needed for the following parts. a) If the wheel is spinning with an angular velocity of 6 rad/s counterclockwise and then a torque of 15 N m is applied over a time interval of 4 s, What is the wheel's final...
A car's wheel has a rotational inertia of 3.1 kg m2. Working in a coordinate system...
A car's wheel has a rotational inertia of 3.1 kg m2. Working in a coordinate system where counterclockwise is positive, answer the following questions. Treat parts a, b, and c as stand-alone questions; the response from one is not needed for the following parts. a) If the wheel is spinning with an angular velocity of 6 rad/s counterclockwise and then a torque of 15 N m is applied over a time interval of 4 s, What is the wheel's final...
A playground merry-go-round has radius 2.40m and moment of inertia 2100kg?m2 about a vertical axle through...
A playground merry-go-round has radius 2.40m and moment of inertia 2100kg?m2 about a vertical axle through its center, and it turns with negligible friction. A child applies an 22.5N force tangentially to the edge of the merry-go-round for 19.0s . If the merry-go-round is initially at rest, what is its angular speed after this 19.0s interval? How much work did the child do on the merry-go-round? What is the average power supplied by the child?
A turntable with a moment of inertia of 5.4 × 10−3 kg. m2 reaches a constant...
A turntable with a moment of inertia of 5.4 × 10−3 kg. m2 reaches a constant rotational speed of 45 rpm from rest in 6.30 seconds. a. Find the number of revolutions the turntable made during this time. b. Determine the rotational work done by the applied torque for increasing the angular speed from zero to 45 rpm. c. While rotating at a constant rotational speed of 45 rpm, a mouse of 32-g was kept 15 cm from the center....
A large horizontal circular platform (M=105.1 kg, r=3.54 m) rotates about a frictionless vertical axle. A...
A large horizontal circular platform (M=105.1 kg, r=3.54 m) rotates about a frictionless vertical axle. A student (m=54.08 kg) walks slowly from the rim of the platform toward the center. The angular velocity ω of the system is 2.24 rad/s when the student is at the rim. Find the moment of inertia of platform through the center with respect to the z-axis. Find the moment of inertia of the student about the center axis (while standing at the rim) of...
A light string of total length L is wrapped completely around the axle of a spinning...
A light string of total length L is wrapped completely around the axle of a spinning toy top. The radius of the axle is r and the rotational inertia of the top is I. The top is initially at rest and the axle is held vertically with respect to a horizontal table. At time t = 0 a force with constant magnitude F pulls the string outwards from the axle of the top, which causes the top to rotate. After...
A turntable has moment of inertia 1 kg m2 and rotates with angular speed of 3...
A turntable has moment of inertia 1 kg m2 and rotates with angular speed of 3 rad/s. A small heavy mass (point particle) of mass 5 kg is placed on the turn table at 2 m from the axis of rotation of the turn table. What is the final rotational velocity of the system? Give your result in rad/s to three significant figures.
A 55.0-kg woman stands at the rim of a horizontal turntable having a moment of inertia...
A 55.0-kg woman stands at the rim of a horizontal turntable having a moment of inertia of 420 kg · m2 and a radius of 2.00 m. The turntable is initially at rest and is free to rotate about a frictionless vertical axle through its center. The woman then starts walking around the rim clockwise (as viewed from above the system) at a constant speed of 1.50 m/s relative to the Earth. (a) In what direction does the turntable rotate?...
A disk with mass m = 8.5 kg and radius R = 0.35 m begins at...
A disk with mass m = 8.5 kg and radius R = 0.35 m begins at rest and accelerates uniformly for t = 18.9 s, to a final angular speed of ? = 29 rad/s. a) What is the angular acceleration of the disk? b) What is the angular displacement over the 18.9 s? c) What is the moment of inertia of the disk? d) What is the change in rotational energy of the disk? e) What is the tangential...