Question

A 2.0 kg block with a speed of 5.1 m/s collides with a 4.0 kg block...

A 2.0 kg block with a speed of 5.1 m/s collides with a 4.0 kg block that has a speed of 3.4 m/s in the same direction. After the collision, the 4.0 kg block is observed to be traveling in the original direction with a speed of 4.3 m/s. (a) What is the velocity of the 2.0 kg block immediately after the collision? (b) By how much does the total kinetic energy of the system of two blocks change because of the collision? (c) Suppose, instead, that the 4.0 kg block ends up with a speed of 6.8 m/s. What then is the change in the total kinetic energy?

Homework Answers

Answer #1

apply momentum conservation

Pi = P f

2*5.1 +4*3.4 = 2*V + 4*4.3

from here  V = 3.3 m/s

velocity of the 2.0 kg block immediately after the collision = 3.3 m/s

change in KE  

KEf - KEi

(1/2*2*3.3^2 +1/2*4*4.3^2 ) - ( 1/2*2*5.1^2 +1/2*4*3.4^2)

  = 1.26 energy  losss

otal kinetic energy change = 1.26 joule

(c) Suppose, instead, that the 4.0 kg b

2*5.1 +4*3.4 = 2*V + 4*6.8

V = -1.7 m/s

change in KE  

KEf - KEi

(1/2*2*1.7^2 +1/2*4*6.8^2 ) - ( 1/2*2*5.1^2 +1/2*4*3.4^2)

change in the total kinetic energy = 46.25 joule

( though it is not possible that energy after collision increasing )

let me know in a comment if there is any problem or doubts

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 7.0 kg block with a speed of 3.0 m/s collides with a 14.0 kg block...
A 7.0 kg block with a speed of 3.0 m/s collides with a 14.0 kg block that has a speed of 2.0 m/s in the same direction. After the collision, the 14.0 kg block is observed to be traveling in the original direction with a speed of 2.5 m/s. (a) What is the velocity of the 7.0 kg block immediately after the collision? (b) By how much does the total kinetic energy of the system of two blocks change because...
A 6.9 kg block with a speed of 3.6 m/s collides with a 13.8 kg block...
A 6.9 kg block with a speed of 3.6 m/s collides with a 13.8 kg block that has a speed of 2.4 m/s in the same direction. After the collision, the 13.8 kg block is observed to be traveling in the original direction with a speed of 3.0 m/s. (a) What is the velocity of the 6.9 kg block immediately after the collision? (b) By how much does the total kinetic energy of the system of two blocks change because...
A 5.0 kg block with a speed of 3.0 m/s collides with a 10 kg block...
A 5.0 kg block with a speed of 3.0 m/s collides with a 10 kg block that has a speed of 2.2 m/s in the same direction. After the collision, the 10 kg block is observed to be traveling in the original direction with a speed of 2.7 m/s. (b) By how much does the total kinetic energy of the system of two blocks change because of the collision? ________ J (c) Suppose, instead, that the 10 kg block ends...
A 5 kg block with a speed of 3.0 m/s collides with a 10 kg block...
A 5 kg block with a speed of 3.0 m/s collides with a 10 kg block that has a speed of 2.0 m/s in the same direction. After the collision, the 10 kg block travels in the original direction with a speed of 2.5 m/s. (a) Draw (i) a before/after sketch, (ii) momentum & energy bar diagrams of the situation, and (iii) identify the collision as elastic, inelastic and completely inelastic. (b) what is the velocity of the 5.0 kg...
a 1.5 kg car (1) initially moving at 4.0 m/s to the right collides with a...
a 1.5 kg car (1) initially moving at 4.0 m/s to the right collides with a 2.0 kg car (2) initially moving at 2.0 m/s to the left. After the inelastic collision, car 1 is moving to the left at 1.2 m/s A) What is the velocity and direction of car 2 after the collision? B) What is the change in total kinetic energy and the percentage of initial kinetic energy remaining after the collision?
2.00-kg block A traveling east at 20.0 m/s collides with 3.00-kg block B traveling west at...
2.00-kg block A traveling east at 20.0 m/s collides with 3.00-kg block B traveling west at 10.0 m/s. After the collision, block A has a velocity of 5.00 m/s due west. (a) How much kinetic energy was lost during the collision? (b) If the blocks were in contact for 75 ms, determine the magnitude and direction of average force exerted on block A.
A ball of mass 0.265 kg that is moving with a speed of 5.1 m/s collides...
A ball of mass 0.265 kg that is moving with a speed of 5.1 m/s collides head-on and elastically with another ball initially at rest. Immediately after the collision, the incoming ball bounces backward with a speed of 3.5 m/s . Part A: Calculate the velocity of the target ball after the collision. Part B: Calculate the mass of the target ball.
A 3.4 kg block moving with a velocity of +4.0 m/s makes an elastic collision with...
A 3.4 kg block moving with a velocity of +4.0 m/s makes an elastic collision with a stationary block of mass 1.9 kg. (a) Use conservation of momentum and the fact that the relative speed of recession equals the relative speed of approach to find the velocity of each block after the collision. ______m/s (for the 3.4 kg block) ______m/s (for the 1.9 kg block) (b) Check your answer by calculating the initial and final kinetic energies of each block....
A curling stone of mass 20 kg and initially traveling at 2.0 m/s collides head-on with...
A curling stone of mass 20 kg and initially traveling at 2.0 m/s collides head-on with a lighter stone of mass 15 kg which is initially at rest. After the collision the struck stone has a speed of 1.6 m/s in the same direction as the initial velocity of the heavy stone. a) What is the final velocity of the heavy stone? b) Is this collision elastic? Explain. If the collision is not elastic, find the macroscopic energy lost in...
A 2.2 kg block moving at 3.5 m/s collides and sticks with a stationary block of...
A 2.2 kg block moving at 3.5 m/s collides and sticks with a stationary block of mass 4.5 kg. What is their combined speed immediately after the collision?