Question

A diverging lens with a focal length of -19.7 cm and a converging lens with a...

A diverging lens with a focal length of -19.7 cm and a converging lens with a focal length of 11.0 cm have a common central axis. Their separation is 39.5 cm. An object of height 1.1 cm is 26.4 cm in front of the diverging lens, on the common central axis. Find the location of the final image produced by the combination of the two lenses.
Where is the image located as measured from the converging lens?

What is the height of that image?
With respect to the original object, is the image is real or virtual, upright or inverted? Check all statements that are true.

Select all that are True.
The image is real
The image is upright
The image is inverted
The image is virtual

Homework Answers

Answer #1

v = image distance , u = object distance , m = magnificatin

lens formula

1/v -1/u=1/f

1/v-1/-26.4 = 1/-19.7

from here v≈-11.2816 cm virtual upright

m1 = v/u = -11.2816/ -26.4 =0.427333333

in left same side of the object now this image act as object for 2nd lens so its distance from conveging lense = 11.2816 +39.5 = 50.7816 cm

apply again

1/v -1/u=1/f

1/v -1/-50.7816 = 1/11

from here 2nd image v= 14.0416 cm in right answer  

m1 = v/u = 14.0416/ -50.7816 = -0.276509602

so total m = m1*m2 =0.427333333*-0.276509602 = - 0.1181

height of image = 1.1* 0.1181 = 0.1299 cm answer

image is virtual and inverted  

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A diverging lens with a focal length of -15 cm and a converging lens with a...
A diverging lens with a focal length of -15 cm and a converging lens with a focal length of 15 cm have a common central axis. Their separation is 12 cm. An object of height 1.0 cm is 10 cm in front of the diverging lens, on the common central axis. (a) Where does the lens combination produce the final image of the object (the one produced by the second, converging lens)? in cm (b) What is the height of...
A diverging lens with a focal length of -11.3 cm and a converging lens with a...
A diverging lens with a focal length of -11.3 cm and a converging lens with a focal length of 14.6 cm have a common central axis. Their separation is 30.9 cm. An object of height 1.0 cm is 33.1 cm in front of the diverging lens, on the common central axis. Find the location of the final image produced by the combination of the two lenses. Where is the image located as measured from the converging lens? What is the...
A converging lens with a focal length of 4.8 cm is located 24.8 cm to the...
A converging lens with a focal length of 4.8 cm is located 24.8 cm to the left of a diverging lens having a focal length of -15.0 cm. If an object is located 9.8 cm to the left of the converging lens, locate and describe completely the final image formed by the diverging lens. Where is the image located as measured from the diverging lens? What is the magnification? Also determine, with respect to the original object whether the image...
A converging lens with a focal length of +30 cm is placed 40 cm to the...
A converging lens with a focal length of +30 cm is placed 40 cm to the left of a diverging lens with a focal length of -40 cm. An object is placed 60 cm to the left of the converging lens. What is the location and orientation of the image produced by the combination of lenses? Why is the answer B? (a) Upright, on the right of the diverging lens and larger than the main object (b) Inverted, on the...
Two thin lenses with a focal length of magnitude 11.0 cm, the first diverging and the...
Two thin lenses with a focal length of magnitude 11.0 cm, the first diverging and the second converging, are located 8.25 cm apart. An object 1.60 mm tall is placed 18.3 cm to the left of the first (diverging) lens. Part A How far from this first lens is the final image formed? Part B Is the final image real or virtual? Part C What is the height of the final image? Part D Is it upright or inverted?
An object is placed 5cm in front of a diverging lens of focal length 25 cm....
An object is placed 5cm in front of a diverging lens of focal length 25 cm. A second converging lens of focal length 15cm is positioned 20 cm to the right of the first lens. What is the final image distance? What is the magnification of the final image? Is it upright of inverted? Real or virtual?
Two thin lenses with a focal length of magnitude 10.0 cm , the first diverging and...
Two thin lenses with a focal length of magnitude 10.0 cm , the first diverging and the second converging, are located 7.50 cm apart. An object 3.00 mm tall is placed 16.7 cm to the left of the first (diverging) lens. How far from this first lens is the final image formed? Is the final image real or virtual? What is the height of the final image? Is it upright or inverted? Thank you!!
Two thin lenses with a focal length of magnitude 11.5 cm, the first diverging and the...
Two thin lenses with a focal length of magnitude 11.5 cm, the first diverging and the second converging, are located 8.62 cm apart. An object 1.90 mm tall is placed 19.2 cm to the left of the first (diverging) lens. A. How far from the first lens is the final image formed? B. Is the final image virtual or real? C. What is the height of the final image? D. Is it upright or inverted?
Consider a converging lens whose focal length is 5.47 cm. An object is placed on the...
Consider a converging lens whose focal length is 5.47 cm. An object is placed on the axis of the lens at a distance of 11.7 cm from the lens. 1. How far is the object's image from the lens? In centimeters. 2. If it can be determined, is the image real or virtual? virtual real cannot be determined 3. If it can be determined, is the image upright or inverted with respect to the object? inverted upright cannot be determined
. Diverging lens 1 (focal length f1 = −20.0 cm) is placed a distance of d...
. Diverging lens 1 (focal length f1 = −20.0 cm) is placed a distance of d = 45.0 cm to the left of diverging lens 2 (focal length f2 = −15.0 cm). An object is placed p1 = 25.0 cm to the left of diverging lens 1 and has a height of h = 16.0 cm. (a) Where is the image formed by diverging lens 1 (i.e. what is q1)? What is this image’s height and is it upright or...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT