Question

let’s assume that we have a block sliding down a straight plane, instead, as shown to...

let’s assume that we have a block sliding down a straight plane, instead, as shown to the right. It slides from the top to the bottom.

2-1.Does the amount of work that gravity does depend on whether or not there is friction between the block and the plane? Explain.

2-2. If there is friction, does the amount of work that friction does depend on only the vertical displacement, or does it also depend on the horizontal displacement? Why?

Homework Answers

Answer #1

amount of work that gravity => m*g * ( change in height w.r.t the refrence point )

so work done by gravity doesn't depend of  friction

work done by friciotn = fricion force * displacement *cos( theta)

here dispalcemnt should be in the anti parallel direction to the friction force

so it doesn't matter  whether it  is vertical or horizontal you alwyas need to consider the displacement  anti parallel to the fricional force ( anti parallel becuase friciton always act in opposite direction of movement )

i hope this helps if not plz let me know in comment i will be happy to help.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A block of mass 4.0Kg slides down an incline plane of length 10 meters that makes...
A block of mass 4.0Kg slides down an incline plane of length 10 meters that makes an angle of 30 degrees with the horizontal. The coefficient of kinetic friction between the block and the incline is 0.3. If the block is has an initial speed of 2mis down the incline at the top of the incline, then what is the speed at the bottom? Show calculations. Indicate answer. In the previous problem, what was the gain in Kinetic Energy? Show...
2. A block slides down a plane inclined at 35o with respect to the horizontal, with...
2. A block slides down a plane inclined at 35o with respect to the horizontal, with coefficient of kinetic friction 0.2. Find the ratio of the time taken to slide down the plane starting from rest, compared to the time it would take to slide down the plane if it were frictionless. 3. A 20 kg block slides frictionlessly down an inclined plane that is 2.8 m long and 1.2 m high. A person pushes up against the block, parallel...
In the figure, a 5.40 kg block is sent sliding up a plane inclined at θ...
In the figure, a 5.40 kg block is sent sliding up a plane inclined at θ = 37.0° while a horizontal force   of magnitude 50.0 N acts on it. The coefficient of kinetic friction between block and plane is 0.330. What are the (a) magnitude and (b) direction (up or down the plane) of the block's acceleration? The block's initial speed is 4.30 m/s. (c) How far up the plane does the block go? (d) When it reaches its highest...
1.A small block of mass 3.5 kg starting from rest slides down on an incline plane...
1.A small block of mass 3.5 kg starting from rest slides down on an incline plane of height 2.0 m, 40 degrees with respect to horizontal (Fig. 2). The coefficient of kinetic friction between the block and the incline plane is 0.25. At the end of the incline plane, the block hits the top of a hemispherical mound of ice (radius 1.0 m) , loses 75% of final kinetic energy (KE=0.5mv*v) before the collision, then slide down on the surface...
A 1 kg block, starting from rest, slides down a 22 degree inclined plane that is...
A 1 kg block, starting from rest, slides down a 22 degree inclined plane that is .55m tall. At the bottom, the 1 kg block collides with a 3 kg block. The two blocks stick together and slide .52 m on a friction less horizontal surface for .52 sec. What is the speed of the 1kg block before it collides with the 3 kg block? What is the acceleration of the 1kg block as it travels down the inclined plane?...
Block 1 of mass m is on top of block 2 of mass 5m as shown...
Block 1 of mass m is on top of block 2 of mass 5m as shown in the figure. Block 2 is on a horizontal smooth plane, and a rope can pull horizontally on block 2. The static and kinetic friction coefficients between the surfaces of the two blocks are 5/8 and 1/2 respectively. What is the resulting acceleration of block 2 if a force F=4mg with g being the acceleration of gravity is applied to the rope? Basically the...
A 500-g block is released from rest and slides down a frictionless track that begins 2.26...
A 500-g block is released from rest and slides down a frictionless track that begins 2.26 m above the horizontal, as shown in the figure below. At the bottom of the track, where the surface is horizontal, the block strikes and sticks to a light spring with a spring constant of 29.5 N/m. Find the maximum distance the spring is compressed. m A 500-g block rests at the top of a track on a horizontal platform. From this platform, the...
To test a slide at an amusement park, a block of wood with mass 3.00 kg...
To test a slide at an amusement park, a block of wood with mass 3.00 kg is released at the top of the slide and slides down to the horizontal section at the end, a vertical distance of 23.0 mm below the starting point. The block flies off the ramp in a horizontal direction and then lands on the ground after traveling through the air 30.0 mm horizontally and 40.0 mm downward. Neglect air resistance. How much work does friction...
A 3.0 kg block slides down an incline that makes an angle ? = 30?The coefficient...
A 3.0 kg block slides down an incline that makes an angle ? = 30?The coefficient of kinetic friction between the block and the incline is ?k = 0.3 If the incline is 3 m long: 1. Determine the work done by friction 2. Determine the work done by the normal force 3. Determine the work done by gravity 4. What is the total work done on the block? 5. If the block is given an initial speed of 5...
1) a) A block of mass m slides down an inclined plane starting from rest. If...
1) a) A block of mass m slides down an inclined plane starting from rest. If the surface is inclined an angle theta above the horizontal, and the block reaches a speed V after covering a distance D along the incline, what is the coefficient of kinetic friction? b) at a distance D1 (still on the incline), the block comes to an instantaneous standstill against a spring with spring constant k. How far back up does the block? Why do...