Question

A copper wire that has a diameter of 2.00 mm carries a current of 10.0 A....

A copper wire that has a diameter of 2.00 mm carries a current of 10.0 A. Assuming that each copper atom contributes one free electron to the metal, calculate the drift speed of the electrons in the wire. The molar mass of copper is 63.5 g/mol and the density of copper is 8.95 g/cm3.

Homework Answers

Answer #1

Given : d = 2 mm , I = 10 A , M= 63.5 g/mol , = 8.95 g/cm3

Solution:

Step:1

Number density of atom for copper is given by:

n =[ (6×1023)(8950 kg/m3)]/[63.5×10-3kg/mol]

n = 8.46 × 1028 m-3

Step:2

Cross sectional area of the wire is given by :

A = (/4)d2

= (3.14/4)(0.002)2

= 3.14×10-6 m2

Step:3

Using the equation, I = neAvd

Where vd is the drift velocity.

10 A = (8.46×1028 m-3)(1.6×10-19 C)(3.14×10-6 m2)(vd)

vd = 10/42503.04 = 2.35×10-4 m/s

Answer: drift velocity (vd)= 2.35×10-4 m/s

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a copper wire with a diameter of 1.67 mm. (a) What is the drift speed...
Consider a copper wire with a diameter of 1.67 mm. (a) What is the drift speed of the electrons in the copper wire when a current of 14.0 A flows through it? Assume that each copper atom contributes one free electron to the metal. The density of copper is 8.92 g/cm3. (b) How does this drift speed compare to the random rms speed of an electron at 20.0°C? To make this comparison, determine the random rms speed of an electron...
Assume that a gold wire 0.32 mm in diameter carries one mobile electron per atom. The...
Assume that a gold wire 0.32 mm in diameter carries one mobile electron per atom. The mass density and the molecular weight of gold are 1.89×104 kg/m3 and 197.0 g/mol, respectively. Calculate the drift speed of the electrons in this wire when it carries a current of 2.44 A. (ans. 3.28×10-3 m/s)
A copper wire with diameter of 1,5 mm and length of 4m carries constant current of...
A copper wire with diameter of 1,5 mm and length of 4m carries constant current of 1.75 A. The free electron density in the wire is 8,5x1028 m-3. The resistivity of copper is 1,72x10-8 capital omega.m. Calculate a) current density, b)drift velocity, c) magnitude of electric field, d) potential between the terminals of wire, e)power dissipated as heat f) mean free time. (mass of electron: 9,1x10-31kg, magnitude of charge of electron: 1,6x10-19 C)
A copper wire with diameter of 1,5 mm and length of 4m carries constant current of...
A copper wire with diameter of 1,5 mm and length of 4m carries constant current of 1.75 A. The free electron density in the wire is 8,5x1028 m-3. The resistivity of copper is 1,72x10-8 .m. Calculate   a) current density, b)drift velocity, c) magnitude of electric field, d) potential between the terminals of wire, e)power dissipated as heat f) mean free time. (mass of electron: 9,1x10-31kg, magnitude of charge of electron: 1,6x10-19 C)
Calculate the average drift speed of electrons traveling through a copper wire with a crosssectional area...
Calculate the average drift speed of electrons traveling through a copper wire with a crosssectional area of 30 mm2 when carrying a current of 30 A (values similar to those for the electric wire to your study lamp). Assume one electron per atom of copper contributes to the current. The atomic mass of copper is 63.5 g/mol and its density is 8.93 g/cm3 . Avogadro’s number is 6.022 × 1023 and the fundamental charge is 1.602 × 10−19 C. Answer...
A 10 gauge copper wire carries a current of 12 A. Assuming one free electron per...
A 10 gauge copper wire carries a current of 12 A. Assuming one free electron per copper atom, calculate the drift velocity of the electrons. (The cross-sectional area of a 10-gauge wire is 5.261 mm2.) ...........................mm/s
Calculate the drift velocity of electrons in a copper wire which has a diameter of 3.256...
Calculate the drift velocity of electrons in a copper wire which has a diameter of 3.256 mm and carrying a 15.0–A current, given that there is one free electron per copper atom. The density of copper is 8.80×103 kg/m3.
The point of this problem is to show how slowly electrons travel on average through a...
The point of this problem is to show how slowly electrons travel on average through a thin wire, even for large values of current. A wire made from copper with a cross-section of diameter 0.740 mm carries a current of 13.0 A. Calculate the "areal current density"; in other words, how many electrons per square meter per second flow through this wire? (Enter your answer without units.) The density of copper is 8.99 g/cm3, and its atomic mass is 63.8....
A 7.2 mm diameter conducting wire carries a current of 3.8 A. If the density of...
A 7.2 mm diameter conducting wire carries a current of 3.8 A. If the density of the conduction electrons (free electrons) in the wire is n=19.6×1028m-3, determine the magnitude of the drift velocity of the electrons within the wire. Express your answer in units of μm/s (micrometers per second) using one decimal place. Take the charge of the electron e=1.6×10-19C.
There is a wire made of copper with a diameter of 3.26 mm. A current of...
There is a wire made of copper with a diameter of 3.26 mm. A current of 20.0 A was applied to this wire. Answer the following question assuming that the electron density of copper is n = 8.47 × 1028 m-3. (1) Find the current density. (2) Find the electron drift velocity. (3) When the resistivity of copper is 1.70 × 10-8 Ω·m, find the voltage drop that occurs along the length of this wire. (4) Find the electron mobility.