Question

Two identical conducting small spheres are placed with their centers 0.250 m apart. One is given...

Two identical conducting small spheres are placed with their centers 0.250 m apart. One is given a charge of 12.0 nC, and the other is given a charge of -16.0 nC.

(a) Find the electric force exerted on one sphere by the other.
Magnitude
NDirection

(b) The spheres are connected by a conducting wire. Find the electric force between the two after equilibrium has occurred.
Magnitude
NDirection

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two small identical conducting spheres are placed with their centers 0.65 m apart. One is given...
Two small identical conducting spheres are placed with their centers 0.65 m apart. One is given a charge of 12 ? 10?9 C, the other a charge of ?17 ? 10?9 C. (a) Find the electrostatic force exerted on one sphere by the other. magnitude N direction ---Select--- attractive repulsive (b) The spheres are connected by a conducting wire. Find the electrostatic force between the two after equilibrium is reached, where both spheres have the same charge. magnitude N direction...
1) A small object of mass 3.8 g and charge 15 mC is suspended motionless above...
1) A small object of mass 3.8 g and charge 15 mC is suspended motionless above the ground when immersed in a uniform electric field perpendicular to the ground. What is the magnitude and direction of the electric field? 2)Two small identical conducting spheres are placed with their centers 0.3 m apart. One is given a charge of 10  10-9 C, the other a charge of –18  10-9 C. (a) Find the electrostatic force exerted on one sphere by the other. (b)...
Two small, identical conducting spheres repel each other with a force of 0.035 N when they...
Two small, identical conducting spheres repel each other with a force of 0.035 N when they are 0.55 m apart. After a conducting wire is connected between the spheres and then removed, they repel each other with a force of 0.065 N. What is the original charge on each sphere? (Enter the magnitudes in C.) Smaller Value: Larger Value:
There are two identical, positively charged conducting spheres fixed in space. The spheres are 32.0 cm...
There are two identical, positively charged conducting spheres fixed in space. The spheres are 32.0 cm apart (center to center) and repel each other with an electrostatic force of F1 = 0.0750 N. Then, a thin conducting wire connects the spheres, redistributing the charge on each sphere. When the wire is removed the spheres still repel but with a force of F2 = 0.100 N. Using this information, find the initial charge on each sphere, q1 and q2 if initially...
There are two identical, positively charged conducting spheres fixed in space. The spheres are 47.8 cm...
There are two identical, positively charged conducting spheres fixed in space. The spheres are 47.8 cm apart (center to center) and repel each other with an electrostatic force of F1 = 0.0720 N. Then, a thin conducting wire connects the spheres, redistributing the charge on each sphere. When the wire is removed the spheres still repel but with a force of F2 = 0.115 N. Using this information, find the initial charge on each sphere, q1 and q2 if initially...
Chapter 21, Problem 048 In the figure three identical conducting spheres form an equilateral triangle of...
Chapter 21, Problem 048 In the figure three identical conducting spheres form an equilateral triangle of side length d = 16.0 cm. The sphere radii are much smaller than d and the sphere charges are qA = -1.59 nC, qB = -5.78 nC, and qC = +9.30 nC. (a) What is the magnitude of the electrostatic force between spheres A and C? The following steps are taken: A and B are connected by a thin wire and then disconnected; B...
There are two identical, positively charged conducting spheres fixed in space. The spheres are 34.8 cm...
There are two identical, positively charged conducting spheres fixed in space. The spheres are 34.8 cm apart (center to center) and repel each other with an electrostatic force of ?1=0.0675 N . A thin conducting wire connects the spheres, redistributing the charge on each sphere. When the wire is removed, the spheres still repel, but with a force of ?2=0.115 N . The Coulomb force constant is ?=1/(4??0)=8.99×109 N⋅m2/C2 . Using this information, find the initial charge on each sphere,...
There are two identical, positively charged conducting spheres fixed in space. The spheres are 49.0 cm...
There are two identical, positively charged conducting spheres fixed in space. The spheres are 49.0 cm apart (center to center) and repel each other with an electrostatic force of F1 = 0.0705 N. Then, a thin conducting wire connects the spheres, redistributing the charge on each sphere. When the wire is removed the spheres still repel but with a force of F2 = 0.115 N. Using this information, find the initial charge on each sphere, q1 and q2 if initially...
Two conducting spheres, one of radius 0.020 m. and the other of radius 0.170 m., each...
Two conducting spheres, one of radius 0.020 m. and the other of radius 0.170 m., each have a charge 7.00E-08 C. and are very far apart. If the spheres are connected by a conducting wire, find the final potential (in volts) in each sphere.
There are two identical, positively charged conducting spheres fixed in space. The spheres are 31.4 cm31.4...
There are two identical, positively charged conducting spheres fixed in space. The spheres are 31.4 cm31.4 cm apart (center to center) and repel each other with an electrostatic force of ?1=0.0615 NF1=0.0615 N . A thin conducting wire connects the spheres, redistributing the charge on each sphere. When the wire is removed, the spheres still repel, but with a force of ?2=0.115 NF2=0.115 N . The Coulomb force constant is ?=1/(4??0)=8.99×109 N⋅m2/C2k=1/(4πϵ0)=8.99×109 N⋅m2/C2 . Using this information, find the initial...