Question

In the figure below, m1 = 3.2 kg, m2 = 5.3 kg, and the coefficient of...

In the figure below, m1 = 3.2 kg, m2 = 5.3 kg, and the coefficient of kinetic friction between the inclined plane and the 3.2-kg block is μk = 0.26. Find the magnitude of the acceleration of the masses and the tension in the cord.

the ramp is 30 degrees m2 is hanging

Homework Answers

Answer #1

let's start with m2:

Fnet = m2a = 5.3 kg *a = W - T2

5.3a = m2g - T2  

5.3a = 5.3 * 9.8m/s² - T2

(That is, I assume that m2 will fall, which means that its weight exceeds the tension in the cord. I'll call this "positive" acceleration.) So
T2 = 51.9 - 5.3a

Now for m1:
gravity parallel to plane: Fg = m1gsinΘ = 3.2kg * 9.8m/s² * sin30 = 15.7 N
friction: Ff = µm1gcosΘ = 0.26 * 3.2kg * 9.8m/s² * cos30 = 7.06 N
tension: T1
Fnet = m1a = 3.2kg * a = T1 - Ff - Fg = T1 - 15.7N - 7.06 N = T1 - 22.8 N
(That is, the net acceleration on m1 is the tension pulling it up the slope less friction and gravity.) So
T1 = 3.2a + 22.8 N

Since T2 = T1,
51.9 - 5.3a = 3.2a + 22.8
29.1 = 8.5a
a = 3.42 m/s² ← acceleration

Tension in cord, T2 = 51.9 - 5.3a = 51.9N - 5.3kg * 3.42m/s² = 33.77 N ←
Check:
T1 = 3.2a + 22.8 = 3.2kg * 3.42 m/s² + 22.8 N = 33.74 N

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A block of mass M2 = 8.45 kg on a plane inclined moving down at angle...
A block of mass M2 = 8.45 kg on a plane inclined moving down at angle θ = 50° is connected by a cord over a massless, frictionless pulley to a second block of mass M1 = 5.36 kg on a horizontal surface. The coefficient of kinetic friction between M1, M2 and the surface is μk = 0.150, the Force F1 = 11.3 N is acting downward on M1, and the Force F2 = 21.8 N is acting on M2...
Physics Giancoli 5th edition ch4 Q62. A block m1 lying on a frictinless inclined plane is...
Physics Giancoli 5th edition ch4 Q62. A block m1 lying on a frictinless inclined plane is connected to a mass m2 by a massless cord passing over a pulley. A. The coefficient of kinetic friction between M1 and the plane is .15. The two masses are equal to 2.7 kg. As m2 moves down, determine the magnitude and direction of the acceleration of m1 and m2 given the angle of inclination is 25 degrees.
Objects with masses m1 = 12.0 kg and m2 = 8.0 kg are connected by a...
Objects with masses m1 = 12.0 kg and m2 = 8.0 kg are connected by a light string that passes over a frictionless pulley as in the figure below. If, when the system starts from rest, m2 falls 1.00 m in 1.48 s, determine the coefficient of kinetic friction between m1 and the table.    Express the friction force in terms of the coefficient of kinetic friction. Obtain an expression for the acceleration in terms of the masses and the...
7) A block of mass m1 = 38 kg on a horizontal surface is connected to...
7) A block of mass m1 = 38 kg on a horizontal surface is connected to a mass m2 = 21.6 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction between m1 and the horizontal surface is 0.24. (a) What is the magnitude of the acceleration (in m/s2) of the hanging mass? Answer:    m/s2 (b) Determine the...
Two masses m1 = 5 kg and m2 = 3 kg are connected by a light...
Two masses m1 = 5 kg and m2 = 3 kg are connected by a light rope dropped over a pulley as shown in the figure a) Neglecting friction, what is the acceleration of these masses? b) What is the tension of the rope? c) What will be the acceleration if the coefficient of friction for the mass m1 is μk = 0.4?  
A block of mass m1 = 3.27 kg on a frictionless plane inclined at angle θ...
A block of mass m1 = 3.27 kg on a frictionless plane inclined at angle θ = 26.2° is connected by a cord over a massless, frictionless pulley to a second block of mass m2 = 2.60 kg hanging vertically (see the figure). (a) What is the acceleration of the hanging block (choose the positive direction down)? (b) What is the tension in the cord?
Two blocks with masses M1 and M2 are connected by a massless string that passes over...
Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown. M1 has a mass of 2.25 kg and is on an incline of θ1=46.5∘ with coefficient of kinetic friction μ1=0.205. M2 has a mass of 6.05 kg and is on an incline of θ2=33.5∘ with coefficient of kinetic friction μ2=0.105. The two‑block system is in motion with the block of mass M2 sliding down the ramp. Find the magnitude...
Two blocks of mass m1 = 9.20 kg and m2 are connected by a light string....
Two blocks of mass m1 = 9.20 kg and m2 are connected by a light string. When a horizontal force F = 105 N is applied to m1 as shown in the figure below, the acceleration of the system is 3.20 m/s2 towards the left and the tension in the string connecting the two blocks is 62.0 N. The blocks are moving on a rough surface with an unknown coefficient of kinetic friction. Determine the coefficient of kinetic friction between...
In the figure below, the hanging object has a mass of m1 = 0.370 kg; the...
In the figure below, the hanging object has a mass of m1 = 0.370 kg; the sliding block has a mass of m2 = 0.900 kg; and the pulley is a hollow cylinder with a mass of M = 0.350 kg, an inner radius of R1 = 0.020 0 m, and an outer radius of R2 = 0.030 0 m. Assume the mass of the spokes is negligible. The coefficient of kinetic friction between the block and the horizontal surface...
Constants (Figure 1)Block 1, of mass m1 = 0.600 kg , is connected over an ideal...
Constants (Figure 1)Block 1, of mass m1 = 0.600 kg , is connected over an ideal (massless and frictionless) pulley to block 2, of mass m2, as shown. For an angle of ? = 30.0 ? and a coefficient of kinetic friction between block 2 and the plane of ? = 0.400, an acceleration of magnitude a = 0.400 m/s2 is observed for block 2. Part A Find the mass of block 2, m2. Express your answer numerically in kilograms.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT