Question

A mass of 6 kg rests on a floor with a coefficient of static friction of...

A mass of 6 kg rests on a floor with a coefficient of static friction of 0.95 and coefficient kinetic friction of 0.30. One force is applied vertically downward of 22 Newtons and another force is applied at an angle of 28 degrees below the horizontal. Calculate what the magnitude this force needs to be in order to begin to move the mass. If that force is removed and another force is applied at an angle of 28 degrees above the horizontal (the downward force is still there), calculate the force needed to begin to move the force for that situation. How much more force is needed to begin the mass, in Newtons, when the force is angled below the horizontal compared to above the horizontal?

Homework Answers

Answer #1

Here, u = coefficient of static friction = 0.95

for the force is applied below horizontal

for moving , Normal force

N = 6*9.81 + 22 + F * sin(theta)

N = 6*9.81 + 22 + F * sin(28)

for moving

F * cos(28) = u * N = 0.95 * (6*9.81 + 22 + F * sin(28))

solving for F

F = 175.80 N

the magnitude of force needed is 175.80 N

============================

when force is applied above horizontal

for moving , Normal force

N = 6*9.81 + 22 - F * sin(theta)

N = 6*9.81 + 22 - F * sin(28)

for moving

F * cos(28) = u * N = 0.95* (6*9.81 + 22 - F * sin(28))

solving for F

F = 57.80 N

the magnitude of force needed is 57.80 N

================================
more force needed = 175.80 N - 57.80 N = 118 N

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A mass of 2 kg is placed on a horizontal surface with a coefficient of kinetic...
A mass of 2 kg is placed on a horizontal surface with a coefficient of kinetic friction of 0.3. A force is applied vertically downward to it and another force of 85 Newtons is applied at 18 degrees below the horizontal. As it moves 9 meters in the +x direction it loses 160 Joules of kinetic energy. What is the amount of the force which is applied downward in Newtons?
A block of mass m = 14.5 kg rests on an inclined plane with a coefficient...
A block of mass m = 14.5 kg rests on an inclined plane with a coefficient of static friction of μs = 0.16 between the block and the plane. The inclined plane is L = 6.1 m long and it has a height of h = 3.8 m at its tallest point. A.What angle, θ in degrees, does the plane make with respect to the horizontal? B.What is the magnitude of the normal force, FN in newtons, that acts on...
A 5 kg block rests on a flat surface with a coefficient of static friction of...
A 5 kg block rests on a flat surface with a coefficient of static friction of 0.5 and a coefficient of kinetic friction of 0.3.A force of 20 N pushes on the block does not move . what is the magnitude of the frictional force on the block
1. A mass of 9.9 kg is resting on a horizontal surface without friction. A force...
1. A mass of 9.9 kg is resting on a horizontal surface without friction. A force is applied vertically upward to the mass. What does the amount of this force need to be in order to begin to pull the mass off the surface, in Newtons? 2. A mass of 8 kg is resting on a horizontal surface without friction. A force of 143 Newtons is applied in the +x direction, a force of 19 Newtons is applied in the...
A large crate with mass m rests on a horizontal floor. The static and kinetic coefficients...
A large crate with mass m rests on a horizontal floor. The static and kinetic coefficients of friction between the crate and the floor are μs and μk, respectively. A woman pushes downward on the crate at an angle θ below the horizontal with a force F⃗ . What is the magnitude of the force vector F⃗  required to keep the crate moving at constant velocity? If μs is greater than some critical value, the woman cannot start the crate moving...
A 1.680 kg block of wood rests on a steel desk. The coefficient of static friction...
A 1.680 kg block of wood rests on a steel desk. The coefficient of static friction between the block and the desk is μs = 0.555 and the coefficient of kinetic friction is μk = 0.205. At time t = 0, a force F = 5.63 N is applied horizontally to the block. State the force of friction applied to the block by the table at the following times: T=0              T>0 Consider the same situation, but this time the external...
A 2.040 kg block of wood rests on a steel desk. The coefficient of static friction...
A 2.040 kg block of wood rests on a steel desk. The coefficient of static friction between the block and the desk is μs = 0.605 and the coefficient of kinetic friction is μk = 0.255. At time t = 0, a force F = 7.45 N is applied horizontally to the block. State the force of friction applied to the block by the table at the following times: t=0 and t > 0. Consider the same situation, but this...
A 2.360 kg block of wood rests on a steel desk. The coefficient of static friction...
A 2.360 kg block of wood rests on a steel desk. The coefficient of static friction between the block and the desk is ?s=0.455 and the coefficient of kinetic friction is ?k=0.255. At time ?=0, a force ?=6.48 N is applied horizontally to the block. State the force of friction applied to the block by the table at times ?=0 and ?>0. t = 0 _________________ N t > 0 __________________ N Consider the same situation, but this time the...
In the figure, a slab of mass m1 = 41 kg rests on a frictionless floor,...
In the figure, a slab of mass m1 = 41 kg rests on a frictionless floor, and a block of mass m2 = 11 kg rests on top of the slab. Between block and slab, the coefficient of static friction is 0.60, and the coefficient of kinetic friction is 0.40. A horizontal force   of magnitude 106 N begins to pull directly on the block, as shown. In unit-vector notation, what are the resulting accelerations of (a) the block and (b)...
A mass of 8 kg is placed on an incline with a coefficient of static friction...
A mass of 8 kg is placed on an incline with a coefficient of static friction of 1.67 and coefficient of kinetic friction of 1.29. No additional forces are acting on it and it is raised slowly from a small angle and it begins to slide at some angle. If 10 degrees is added to this angle, and the mass started from rest from a vertical height of 33 meters, how much longer would it take to travel down the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT