Question

Disk A, with a mass of 2.0 kg and a radius of 60 cm , rotates...

Disk A, with a mass of 2.0 kg and a radius of 60 cm , rotates clockwise about a frictionless vertical axle at 40 rev/s . Disk B, also 2.0 kg but with a radius of 40 cm , rotates counterclockwise about that same axle, but at a greater height than disk A, at 40 rev/s . Disk B slides down the axle until it lands on top of disk A, after which they rotate together.

Homework Answers

Answer #1

let
m1 = 2 kg
r1 = 60 cm = 0.6 m
w1 = -40 rev/s (clockwise)
I1 = 0.5*m1*r1^2

= 0.5*2*0.6^2

= 0.36 kg.m^2

m2 = 2 kg
r2 = 40 cm = 0.4 m
w2 = 40 rev/s (counter clockwise)
I2 = 0.5*m2*r2^2

= 0.5*2*0.4^2

= 0.16 kg.m^2

let wf is the final angular velocity of the two disks.

Apply conservation of angular momentum

(I1 + I2)*wf = I1*w1 + I2*w2

wf = (I1*w1 + I2*w2)/(I1 + I2)

= (0.36*(-40) + 0.16*40 )/(0.36 + 0.16)

= -15.4 rev/s

|wf| = 15.4 rev/s <<<<<<<------Answer

negative sign indicates the disks rotate clockwise direction.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Disk A, with a mass of 2.0 kg and a radius of 90 cm , rotates...
Disk A, with a mass of 2.0 kg and a radius of 90 cm , rotates clockwise about a frictionless vertical axle at 40 rev/s . Disk B, also 2.0 kg but with a radius of 50 cm , rotates counterclockwise about that same axle, but at a greater height than disk A, at 40 rev/s . Disk B slides down the axle until it lands on top of disk A, after which they rotate together. After the collision, what...
A uniform disk with radius 0.440 m and mass 32.0 kg rotates in a horizontal plane...
A uniform disk with radius 0.440 m and mass 32.0 kg rotates in a horizontal plane on a frictionless vertical axle that passes through the center of the disk. The angle through which the disk has turned varies with time according to θ(t)=( 1.00 rad/s )t+( 8.10 rad/s2 )t2 . What is the resultant linear acceleration of a point on the rim of the disk at the instant when the disk has turned through 0.300 rev ? Express your answer...
A uniform disk with radius 0.320 m and mass 32.0 kg rotates in a horizontal plane...
A uniform disk with radius 0.320 m and mass 32.0 kg rotates in a horizontal plane on a frictionless vertical axle that passes through the center of the disk. The angle through which the disk has turned varies with time according to ?(t)=( 1.00 rad/s)t+( 6.10 rad/s2 )t2 . a)What is the resultant linear acceleration of a point on the rim of the disk at the instant when the disk has turned through 0.300 rev ? Express your answer with...
A solid cylinder of mass 1.6 kg and radius 35 cm is rotating counterclockwise around a...
A solid cylinder of mass 1.6 kg and radius 35 cm is rotating counterclockwise around a vertical axis running through the centers of its circular faces at 560 rev/min. A second solid cylinder of the same mass and radius is rotating clockwise around the same vertical axis running through the centers of its circular faces at 850 rev/min. If the cylinders couple so that they rotate about the same vertical axis, what is the angular velocity (in rev/min) of the...
A disk of mass 1.5 kg and radius 65 cm with a small mass of 0.04...
A disk of mass 1.5 kg and radius 65 cm with a small mass of 0.04 kg attached at the edge is rotating at 1.9 rev/s. The small mass suddenly flies off of the disk. What is the disk's final rotation rate (in rev/s)? It says 2.00 is worng.
A 50 kg woman stands at the rim of a horizontal turntable having a moment of...
A 50 kg woman stands at the rim of a horizontal turntable having a moment of inertia of 560 kg·m2 and a radius of 2.0 m. The turntable is initially at rest and is free to rotate about a frictionless vertical axle through its center. The woman then starts walking around the rim clockwise (as viewed from above the system) at a constant speed of 1.5 m/s relative to the Earth. (a) In what direction and with what angular speed...
A very thin 2.0-kg disk with a diameter of 80 cm is mounted horizontally to rotate...
A very thin 2.0-kg disk with a diameter of 80 cm is mounted horizontally to rotate freely about a central vertical axis. On the edge of the disk, sticking out a little, is a small, essentially massless, tab or "catcher." A 2.0-g wad of clay is fired at a speed of 14.0 m/s directly at the tab perpendicular to it and tangent to the disk. The clay sticks to the tab, which is initially at rest, at a distance of...
A disk with mass m = 6.3 kg and radius R = 0.46 m hangs from...
A disk with mass m = 6.3 kg and radius R = 0.46 m hangs from a rope attached to the ceiling. The disk spins on its axis at a distance r = 1.53 m from the rope and at a frequency f = 19.7 rev/s (with a direction shown by the arrow). 1) What is the magnitude of the angular momentum of the spinning disk? kg-m2/s 2) What is the torque due to gravity on the disk? N-m 3)...
A horizontal platform in the shape of a circular disk rotates on a frictionless bearing about...
A horizontal platform in the shape of a circular disk rotates on a frictionless bearing about a vertical axle through the center of the disk. The platform has a radius of 1.80 m and a rotational inertia of 347 kg·m2 about the axis of rotation. A 58.4 kg student walks slowly from the rim of the platform toward the center. If the angular speed of the system is 1.49 rad/s when the student starts at the rim, what is the...
A horizontal platform in the shape of a circular disk rotates on a frictionless bearing about...
A horizontal platform in the shape of a circular disk rotates on a frictionless bearing about a vertical axle through the center of the disk. The platform has a mass of 127.0 kg, a radius of 2.00 m, and a rotational inertia of 5.08×102 kgm2 about the axis of rotation. A student of mass 66.0 kg walks slowly from the rim of the platform toward the center. If the angular speed of the system is 1.31 rad/s when the student...