Question

A series ac circuit contains a 350-Ω resistor, a 11.0-mH inductor, a 3.70-μF capacitor, and an...

A series ac circuit contains a 350-Ω resistor, a 11.0-mH inductor, a 3.70-μF capacitor, and an ac power source of voltage amplitude 45.0 V operating at an angular frequency of 360 rad/s . What is the power factor of this circuit? Find the average power delivered to the entire circuit. What is the average power delivered to the resistor, to the capacitor, and to the inductor? Enter your answers numerically separated by commas.

Homework Answers

Answer #1

PLEASE LET ME KNOW IF THERE IS ANY MISTAKE OR IF YOU HAVE ANY DOUBT...................I AM HERE TO HELP YOU......PLEASE AWLAYS DISCUSS

Xc = 1/wc = 1/360*3.70e-6 = 750.75 ohms

XL = wL = 3.96 ohms

(a) Power factor

cos = cos (tan-1 ( XL - XC / R )

cos = 0.42437

-------------------------------------------------------------------------------------------

Irms = Vrms / Z

Z = 824.74 ohms

Vrms = V/sqrt(2) = 31.819 V

therefore

Irms = 31.819 V / 824.74 ohms

Irms = 0.038581619 A

P =  0.038581619 A * 31.819*0.42437

P = 0.5209 W

---------------------------------------------------------------------------------------

PR = 0.5209 W

PL = 0

PC = 0

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A series RLC circuit contains a 210 Ω resistor, a 17.0 mH inductor, a 2.70 μF...
A series RLC circuit contains a 210 Ω resistor, a 17.0 mH inductor, a 2.70 μF capacitor, and an AC voltage source of amplitude 45.0 V operating at an angular frequency of 360 rad/s. (a) What is the power factor of this circuit? (b) Find the average power delivered to the entire circuit by the source, in W (c) What is the average power delivered to the capacitor, in W?
An L-R-C series circuit consists of a 60.0 Ω resistor, a 16.0 μF capacitor, a 4.00...
An L-R-C series circuit consists of a 60.0 Ω resistor, a 16.0 μF capacitor, a 4.00 mH inductor, and an ac voltage source of voltage amplitude 55.0 V operating at 1500 Hz . a. Find the current amplitude across the inductor, the resistor, and the capacitor. b. Find the voltage amplitudes across the inductor, the resistor, and the capacitor. Enter your answers numerically separated by commas. (VL, VR, VC) e. Find new current amplitude across the inductor, the resistor, and...
A 23-Ω resistor, 58-μF capacitor, and 3.5-mH inductor are connected in series with an AC source...
A 23-Ω resistor, 58-μF capacitor, and 3.5-mH inductor are connected in series with an AC source of amplitude 12 V and frequency 120 Hz. Part (h) With a source voltage of Vsource = V0 cos(2πft), what is the instantaneous voltage, in volts, across the capacitor at time t = 2.25 s? Part (i) What is the amplitude of the voltage drop across the inductor, in volts? Part (j) With a source voltage of Vsource = V0cos(2πft), what is the instantaneous...
An L-R-C series circuit consists of a 60.0 Ω resistor, a 16.0 μF capacitor, a 4.00...
An L-R-C series circuit consists of a 60.0 Ω resistor, a 16.0 μF capacitor, a 4.00 mH inductor, and an ac voltage source of voltage amplitude 55.0 V operating at 1500 Hz . The current amplitude across the inductor, the resistor, and the capacitor is 0.814A...now, double the frequency and... a. Find new current amplitude across the inductor, the resistor, and the capacitor. b. Find new voltage amplitudes across the inductor, the resistor, and the capacitor.
You have a 199 −Ω−Ω resistor, a 0.405 −H−H inductor, a 5.10 −μF capacitor, and a...
You have a 199 −Ω−Ω resistor, a 0.405 −H−H inductor, a 5.10 −μF capacitor, and a variable-frequency ac source with an amplitude of 3.10 VV . You connect all four elements together to form a series circuit. -At what frequency will the current in the circuit be greatest? -What will be the current amplitude at this frequency? -What will be the current amplitude at an angular frequency of 401 rad/srad/s ? -At this frequency, will the source voltage lead or...
A 70 Ω resistor, an 7.0 μF capacitor, and a 34 mH inductor are connected in...
A 70 Ω resistor, an 7.0 μF capacitor, and a 34 mH inductor are connected in series in an ac circuit. -Calculate the impedance for a source frequency of 300 Hz. -Calculate the impedance for a source frequency of 30.0 kHz.
A series AC circuit contains a resistor, an inductor of 210 mH, a capacitor of 5.50...
A series AC circuit contains a resistor, an inductor of 210 mH, a capacitor of 5.50 µF, and a source with ΔVmax = 240 V operating at 50.0 Hz. The maximum current in the circuit is 200 mA. (a) Calculate the inductive reactance. Ω (b) Calculate the capacitive reactance. Ω (c) Calculate the impedance. kΩ (d) Calculate the resistance in the circuit. kΩ (e) Calculate the phase angle between the current and the source voltage. °
You have a 203 −Ω resistor, a 0.396 −H inductor, a 4.99 −μF capacitor, and a...
You have a 203 −Ω resistor, a 0.396 −H inductor, a 4.99 −μF capacitor, and a variable-frequency ac source with an amplitude of 3.00 V . You connect all four elements together to form a series circuit. What will be the current amplitude at an angular frequency of 400 rad/s ?
Consider a series RLC circuit with R = 24 Ω, L = 6.0 mH, and C...
Consider a series RLC circuit with R = 24 Ω, L = 6.0 mH, and C = 32 μF. The circuit is connected to a 10-V (rms), 600-Hz AC source. (a) Is the sum of the voltage drops across R, L, and C equal to 10 V (rms)? (b) Which is greatest, the power delivered to the resistor, to the capacitor, or to the inductor? (c) Find the average power delivered to the circuit.  W
A 11.0-Ω resistor, 6.00-mH inductor, and 70.0-µF capacitor are connected in series to a 55.0-V (rms)...
A 11.0-Ω resistor, 6.00-mH inductor, and 70.0-µF capacitor are connected in series to a 55.0-V (rms) source having variable frequency. If the operating frequency is twice the resonance frequency, find the energy delivered to the circuit during one period.