Question

A block of mass 4.0 kg rests on a horizontal surface where the coefficient of kinetic...

A block of mass 4.0 kg rests on a horizontal surface where the coefficient of kinetic friction between the two is 0.20. A string attached to the block is pulled horizontally, resulting in a 3.0-m/s 2 acceleration by the block. Find the tension in the string. ( g = 9.80 m/s 2)

Homework Answers

Answer #1

When two bodies in contact move with respect to each other, rubbing the surfaces in contact, the friction between them is called kinetic friction.

Kinetic friction

where is the coefficient of kinetic friction and N is the normal force.

Here the block will experience for forces,

1) The normal force N in the upward direction

2) The gravitational force F=Mg in the downward direction

3) The tension T , say in the right direction

4) The kinetic friction in the left direction

For vertical equilibrium,N=Mg

We have kinetic friction

As the block moves towards right with an acceleration a,

Total force on the block

  

=

=4×(3+ 0.2×9.8)

=19.84 N

The tension in the string is 19.84 N

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A block of mass 4.0 kg rests on a horizontal surface where the coefficient of kinetic...
A block of mass 4.0 kg rests on a horizontal surface where the coefficient of kinetic friction between the two is 0.20. A string attached to the block is pulled horizontally, resulting in a 3.0-m/s2 acceleration by the block. Find the tension in the string. (g = 9.80 m/s2)
A block rests on a horizontal, frictionless surface. A string is attached to the block, and...
A block rests on a horizontal, frictionless surface. A string is attached to the block, and is pulled with a force of 48.0 N at an angle θ above the horizontal. After the block is pulled through a distance of 16.0 m its speed is v = 2.10 m/s, and 40.0 J of work has been done on it.What is the mass of the block? (Answer in kg)
A 15.3-kg block rests on a horizontal table and is attached to one end of a...
A 15.3-kg block rests on a horizontal table and is attached to one end of a massless, horizontal spring. By pulling horizontally on the other end of the spring, someone causes the block to accelerate uniformly and reach a speed of 7.81 m/s in 1.75 s. In the process, the spring is stretched by 0.171 m. The block is then pulled at a constant speed of 7.81 m/s, during which time the spring is stretched by only 0.0600 m. Find...
A 15.4-kg block rests on a horizontal table and is attached to one end of a...
A 15.4-kg block rests on a horizontal table and is attached to one end of a massless, horizontal spring. By pulling horizontally on the other end of the spring, someone causes the block to accelerate uniformly and reach a speed of 6.34 m/s in 0.980 s. In the process, the spring is stretched by 0.188 m. The block is then pulled at a constant speed of 6.34 m/s, during which time the spring is stretched by only 0.0836 m. Find...
A textbook of mass 1.91 kg rests on a frictionless, horizontal surface. A cord attached to...
A textbook of mass 1.91 kg rests on a frictionless, horizontal surface. A cord attached to the book passes over a pulley whose diameter is 0.200 m, to a hanging book with mass 3.03 kg. The system is released from rest, and the books are observed to move a distance 1.19 mm over a time interval of 0.790 s. 1. What is the tension in the part of the cord attached to the textbook? 2. What is the tension in...
7) A block of mass m1 = 38 kg on a horizontal surface is connected to...
7) A block of mass m1 = 38 kg on a horizontal surface is connected to a mass m2 = 21.6 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction between m1 and the horizontal surface is 0.24. (a) What is the magnitude of the acceleration (in m/s2) of the hanging mass? Answer:    m/s2 (b) Determine the...
A 4.0-kg block initially at rest is pulled to the right along a horizontal surface by...
A 4.0-kg block initially at rest is pulled to the right along a horizontal surface by a constant horizontal force of 12 N. Find the speed of the block after it has moved 3.0 m if the surfaces in contact have a coefficient of kinetic friction of 0.17 _____. a. 1.8 m/s b. 3.5 m/s c. 2.8 m/s d. 5.3 m/s Suppose the force is applied at an angle. At what angle should the force be applied to achieve the...
A 3.0-kg block sits on top of a 5.0-kg block which is on a horizontal surface....
A 3.0-kg block sits on top of a 5.0-kg block which is on a horizontal surface. The 5.0-kg block is pulled to the right with a force F⃗ . The coefficient of static friction between all surfaces is 0.60 and the kinetic coefficient is 0.37. a) What is the minimum value of F needed to move the two blocks? b) If the force is 10% greater than your answer for (a), what is the acceleration of each block?
A block of mass 2 kg that sits on a horizontal table is connected to a...
A block of mass 2 kg that sits on a horizontal table is connected to a block of mass 6 kg that sits on a ramp of angle 34 ⁰down from the horizontal by a massless string that runs over a pulley in the shape of a solid disk having radius 0.93 m and mass 10 kg. The coefficient of friction for both blocks is 0.256. (a) What is the acceleration of the blocks? (b) The tension in the string...
A block with mass m = 5.00kg slides down a surface inclined 36.9 ? to the...
A block with mass m = 5.00kg slides down a surface inclined 36.9 ? to the horizontal (the figure (Figure 1) ). The coefficient of kinetic friction is 0.24. A string attached to the block is wrapped around a flywheel on a fixed axis at O. The flywheel has mass 25.0kg and moment of inertia 0.500 kg?m2 with respect to the axis of rotation. The string pulls without slipping at a perpendicular distance of 0.200m from that axis. Part A...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT