Question

A block of mass m = 1.50 kg slides down a 30.0∘ incline which is 3.60...

A block of mass m = 1.50 kg slides down a 30.0∘ incline which is 3.60 m high. At the bottom, it strikes a block of mass M = 6.20 kg which is at rest on a horizontal surface (Figure 1). (Assume a smooth transition at the bottom of the incline.) The collision is elastic, and friction can be ignored.

Part A

Determine the speed of the block with mass m = 1.50 kg after the collision.

Express your answer to three significant figures and include the appropriate units.

vm =

SubmitRequest Answer

Part B

Determine the speed of the block with mass M = 6.20 kg after the collision.

Express your answer to three significant figures and include the appropriate units.

vM =

SubmitRequest Answer

Part C

Determine how far back up the incline the smaller mass will go.

Express your answer to three significant figures and include the appropriate units.

dA =

Homework Answers

Answer #1

Using Conservation of energy

0.5 mV^2=mgh

V=sqrt[2gh]=sqrt[2*9.8*3.6]
V=8.4 m/s

For an elastic collision, as per coefficient of resitution, relative velocity before and after are same ,so

V=V1+V2

By Conservation of Momentum

mV=MV2-mV1

mV=MV2-m(V-V2)

2mV =(M+m)V2
V2=2mV/(m+M)
V2 =2*1.5*8.4/(1.5+6.2)

V2=3.27 m/s

a) velocity of m1

V1=8.4-3.27 =5.13 m/s

b) velocity of m2

V2=3.27 m/s

c) considering 3rd equation of motion

h'=V1^2/2g =5.132/2*9.8

h'=1.34 m
Along the incline
d= h'/sin 30
d= 2.68 m
=========
Comment in case any doubt.. good luck

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A block of mass m = 2.10 kg slides down a 30.0∘ incline which is 3.60...
A block of mass m = 2.10 kg slides down a 30.0∘ incline which is 3.60 m high. At the bottom, it strikes a block of mass M = 8.00 kg which is at rest on a horizontal surface (Figure 1). (Assume a smooth transition at the bottom of the incline.) The collision is elastic, and friction can be ignored. Determine the speed of the block with mass m = 2.10 kg after the collision. Determine the speed of the...
A block of mass m = 2.10 kg starts from the rest and slides down a...
A block of mass m = 2.10 kg starts from the rest and slides down a 30.0∘ incline which is 3.60 m high. At the bottom, it strikes a block of mass M = 6.50 kg which is at rest on a horizontal surface (Figure 1). (Assume a smooth transition at the bottom of the incline.) The collision is elastic, and friction can be ignored. a) Determine the speed of the block with mass m = 2.10 kg after the...
1.A small block of mass 3.5 kg starting from rest slides down on an incline plane...
1.A small block of mass 3.5 kg starting from rest slides down on an incline plane of height 2.0 m, 40 degrees with respect to horizontal (Fig. 2). The coefficient of kinetic friction between the block and the incline plane is 0.25. At the end of the incline plane, the block hits the top of a hemispherical mound of ice (radius 1.0 m) , loses 75% of final kinetic energy (KE=0.5mv*v) before the collision, then slide down on the surface...
A ball of mass 0.458 kg moving east (+x direction) with a speed of 3.76 m/s...
A ball of mass 0.458 kg moving east (+x direction) with a speed of 3.76 m/s collides head-on with a 0.229 kg ball at rest. Assume that the collision is perfectly elastic. 1.What is be the speed of the 0.458-kg ball after the collision? Express your answer to three significant figures and include the appropriate units. 2.What is be the direction of the velocity of the 0.458-kg ball after the collision?. 3.What is the speed of the 0.229-kg ball after...
A 3.0 kg block slides down an incline that makes an angle ? = 30?The coefficient...
A 3.0 kg block slides down an incline that makes an angle ? = 30?The coefficient of kinetic friction between the block and the incline is ?k = 0.3 If the incline is 3 m long: 1. Determine the work done by friction 2. Determine the work done by the normal force 3. Determine the work done by gravity 4. What is the total work done on the block? 5. If the block is given an initial speed of 5...
A 0.450-kg ice puck, moving east with a speed of 5.46 m/s , has a head-on...
A 0.450-kg ice puck, moving east with a speed of 5.46 m/s , has a head-on collision with a 0.990-kg puck initially at rest. Assume that the collision is perfectly elastic. Part A What is the speed of the 0.450-kg puck after the collision? Express your answer to three significant figures and include the appropriate units. Part B What is the direction of the velocity of the 0.450-kg puck after the collision? Part C What is the speed of the...
A bullet of mass m is fired into a block of mass M that is at...
A bullet of mass m is fired into a block of mass M that is at rest. The block, with the bullet embedded, slides distance d across a horizontal surface. The coefficient of kinetic friction is μk​ A) What is the speed of a 12 g bullet that, when fired into a 9.0 kg stationary wood block, causes the block to slide 5.6 cm across a wood table? Assume that μk=0.20 Express your answer to two significant figures and include...
Problem 7.26 A 0.250-kg ice puck, moving east with a speed of 5.62 m/s , has...
Problem 7.26 A 0.250-kg ice puck, moving east with a speed of 5.62 m/s , has a head-on collision with a 0.900-kg puck initially at rest. Assume that the collision is perfectly elastic. Part A What is the speed of the 0.250-kg puck after the collision? Express your answer to three significant figures and include the appropriate units. v1 = Part B What is the direction of the velocity of the 0.250-kg puck after the collision? What is the direction...
A 4.5 kg box slides down a 4.8-m -high frictionless hill, starting from rest, across a...
A 4.5 kg box slides down a 4.8-m -high frictionless hill, starting from rest, across a 2.0-m -wide horizontal surface, then hits a horizontal spring with spring constant 520 N/m . The other end of the spring is anchored against a wall. The ground under the spring is frictionless, but the 2.0-m-long horizontal surface is rough. The coefficient of kinetic friction of the box on this surface is 0.24. Part A What is the speed of the box just before...
A 4.5 kg box slides down a 5.2-m -high frictionless hill, starting from rest, across a...
A 4.5 kg box slides down a 5.2-m -high frictionless hill, starting from rest, across a 2.2-m -wide horizontal surface, then hits a horizontal spring with spring constant 550 N/m . The other end of the spring is anchored against a wall. The ground under the spring is frictionless, but the 2.2-m-long horizontal surface is rough. The coefficient of kinetic friction of the box on this surface is 0.27. Part A. What is the speed of the box just before...