Question

Two cars collide at an icy intersection and stick together afterward. The first car has a mass of 1500 kg and was approaching at 4.00 m/s due south. The second car has a mass of 700 kg and was approaching at 18.0 m/s due west.

(a) Calculate the final velocity of the cars. (Note that since
both cars have an initial velocity, you cannot use the equations
for conservation of momentum along the *x*-axis and
*y*-axis; instead, you must look for other simplifying
aspects..)

Magnitude

m/s

Direction

Â° (counterclockwise from west is positive)

(b) How much kinetic energy is lost in the collision? (This energy
goes into deformation of the cars.)

J

Answer #1

(a) in the west direction

M1*V1 = M1V1*cos theta1 + M2V2*cos theta2

Vx (1500 + 700) = 1500 (0) + 700 (18 m/s )

Vx = 12600 / 2200

Vx = 5.72 m/s

In the south direction

Vy(1500 + 700) = (1500)(4m/s) + (700)(0)

Vy = 2.72 m/s

Magnitude is

V = sqrt((Vx)^2 + (Vy)^2)

= sqrt((5.72)^2 + (2.72)^2)

V = 6.33 m/s

Direction is theta = tan^-1(2.72/5.72)

theta = 25.43 degrees

(b) KE_lost = 1/2M1V1^2+ 1/2M2V2^2 - 1/2 (M1+M2) (V)^2

KE = (0.5)(1500)(4)^2 + (0.5)(700)(18)^2 - (05)(1500+700

(6.33)^2

= 81324 J

Two cars collide at an icy intersection and stick together
afterward. The first car has a mass of 1650 kg and was approaching
at 5.00 m/s due south. The second car has a mass of 700 kg and was
approaching at 18.0 m/s due west. (a) Calculate the final velocity
of the cars (In m/s). (Note that since both cars have an initial
velocity, you cannot use the equations for conservation of momentum
along the x-axis and y-axis; instead, you...

Two cars collide at an icy intersection and stick together
afterward. The first car has a mass of 1650 kg and was approaching
at 4.00 m/s due south. The second car has a mass of 700 kg and was
approaching at 18.0 m/s due west.
(a) Calculate the final velocity of the cars. (Note that since
both cars have an initial velocity, you cannot use the equations
for conservation of momentum along the x-axis and
y-axis; instead, you must look...

Two cars collide at an icy intersection and stick together
afterward. The first car has a mass of 1050 kg and was approaching
at 9.00 m/s due south. The second car has a mass of 800 kg and was
approaching at 20.0 m/s due west.
(a) Calculate the final velocity of the cars. (Note that since
both cars have an initial velocity, you cannot use the equations
for conservation of momentum along the x-axis and y-axis; instead,
you must look...

Two cars collide at an icy intersection and stick together
afterward. The first car has a mass of 1300 kg and was approaching
at 5.00 m/s due south. The second car has a mass of 900 kg and was
approaching at 23.0 m/s due west.
(a) Calculate the final velocity (magnitude in m/s and direction
in degrees counterclockwise from the west) of the cars. (Note that
since both cars have an initial velocity, you cannot use the
equations for conservation...

Two cars collide at an icy intersection and stick together
afterward. The first car has a mass of 1050 kg and was approaching
at 7.00 m/s due south. The second car has a mass of 850 kg and was
approaching at 22.0 m/s due west. (a) Calculate the final velocity
(magnitude in m/s and direction in degrees counterclockwise from
the west) of the cars. (Note that since both cars have an initial
velocity, you cannot use the equations for conservation...

Two cars collide at an icy intersection and stick together
afterward. The first car has a mass of 1500 kg and is approaching
at 9.5 m/s due south. The second car has a mass of 750 kg and is
approaching at 17 m/s due west.
A) Calculate the magnitude of the final velocity, in meters per
second, of the cars.
B) Calculate the direction of the final velocity, in degrees,
south of west of the cars.
C) What's the change...

Two cars collide at an icy intersection and stick together
afterward. The first car has a mass of 1250 kg and is approaching
at 9.5 m/s due south. The second car has a mass of 550 kg and is
approaching at 17 m/s due west.Calculate the direction of the final
velocity, in degrees south of west, of the cars.What is the change
in kinetic energy, in joules, for the collision? (This energy goes
into deformation of the cars.)

Two cars collide at an icy intersection and stick together
afterward. The first car has a mass of 1100 kg and is approaching
at 9.5 m/s due south. The second car has a mass of 950 kg and is
approaching at 15 m/s due west.
Part (a) Calculate the magnitude of the final
velocity, in meters per second, of the cars.
Part (b) Calculate the direction of the final
velocity, in degrees south of west, of the cars.
Part (c)...

Two cars collide at an icy intersection and stick together
afterward. The first car has a mass of 1350 kg and is approaching
at 9.5 m/s due south. The second car has a mass of 750 kg and is
approaching at 17.5 m/s due west.
Part (a) Calculate the magnitude of the final
velocity, in meters per second, of the cars.
Part (b) Calculate the direction of the final
velocity, in degrees south of west, of the cars.
Part (c)...

Two cars are headed for an intersection. The first car has a
mass of 1218 kg and is approaching at v1 m/s due south. The second
car has a mass of 846 kg and is approaching at 23.9 m/s due west.
The two collide and the intersection and stick together. If the
angle of the velocity after the collision is 20 degrees south of
west, what is the velocity v1?

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 1 minute ago

asked 22 minutes ago

asked 39 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago

asked 3 hours ago

asked 3 hours ago