Question

A particle's trajectory is described by x =(12t3−2t2)m and y =(12t2−2t)m, where t is in s....

A particle's trajectory is described by x =(12t3−2t2)m and y =(12t2−2t)m, where t is in s.

What is the particle's speed at t=0s ?

What is the particle's speed at t=5.0s ? Express your answer using two significant figures.

What is the particle's direction of motion, measured as an angle from the x-axis, at t=0 s ? Express your answer using two significant figures.

What is the particle's direction of motion, measured as an angle from the x-axis, at t=5.0s ? Express your answer using two significant figures.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A particle with a charge of 37 μC moves with a speed of 77 m/s in...
A particle with a charge of 37 μC moves with a speed of 77 m/s in the positive x direction. The magnetic field in this region of space has a component of 0.42 T in the positive y direction, and a component of 0.87 T in the positive z direction. Part A: What is the magnitude of the magnetic force on the particle? Express your answer using two significant figures. Part B: What is the direction of the magnetic force...
The diagram below shows a block of mass m=2.00kgm=2.00kg on a frictionless horizontal surface, as seen...
The diagram below shows a block of mass m=2.00kgm=2.00kg on a frictionless horizontal surface, as seen from above. Three forces of magnitudes F1=4.00NF1=4.00N, F2=6.00NF2=6.00N, and F3=8.00NF3=8.00N are applied to the block, initially at rest on the surface, at angles shown on the diagram. (Figure 1) In this problem, you will determine the resultant (total) force vector from the combination of the three individual force vectors. All angles should be measured counterclockwise from the positive x axis (i.e., all angles are...
A transverse wave on a string is given by the formula D(x,t)=0.11sin(3.3x?18.0t), where D and x...
A transverse wave on a string is given by the formula D(x,t)=0.11sin(3.3x?18.0t), where D and x are in m and t is in s. a) At t=0.17s, what is the transverse displacement of the point on the string where x=0.54m? Important hint: Does it matter whether your calculator is set to degrees or radians (deg or rad) for this problem? If yes, which setting should you use? Express your answer using two significant figures. D(0.54m,0.17s) = b) At t=0.17s, what...
An object experiences a constant acceleration of 2.00 m/s2 along the -x axis for 2.70 s,...
An object experiences a constant acceleration of 2.00 m/s2 along the -x axis for 2.70 s, attaining a velocity of 18.0 m/s in a direction 47∘∘ from the +x axis. 1) Calculate the magnitude of the initial velocity vector of the object. (Express your answer to two significant figures.) 2) Calculate the direction of the initial velocity vector of the object. Find the angle this vector makes with respect to the +x axis. Use value from -180 to +180. (Express...
A Gaussian wave pulse on a string is described by y(x,t) = 2.4 exp(?(x?2t)²/6), where x...
A Gaussian wave pulse on a string is described by y(x,t) = 2.4 exp(?(x?2t)²/6), where x is measured in meters, y in centimeters, and t in seconds. 2. [1pt] What is the speed of a particle located at x = 1.40 m and t = 0 s? Correct, computer gets: 1.62e+00 cm/s 3. [1pt] What is the acceleration of the same particle at t = 0 s? Answer: Last Answer: 0.069 cm/s^2 and -0.069 cm/s^2
A particle's velocity along the x-axis is described by v(t)= At + Bt2, where t is...
A particle's velocity along the x-axis is described by v(t)= At + Bt2, where t is in seconds, v is in m/s, A= 0.85 m/s2, and B= -0.69 m/s3. Acceleration= -0.53 m/s2 @ t=0 and the Displacement= -2.58 m b/w t=1s to t=3s. What is the distance traveled in meters, by the particle b/w times t=1s and t=3s?
A transverse wave on a string is described by y(x, t) = (0.140 mm) sin {(5.747...
A transverse wave on a string is described by y(x, t) = (0.140 mm) sin {(5.747 rad/m)[x − (69.8 m/s)t]}. Find the wavelength of this wave. in m Find the frequency of this wave. in Hz Find the amplitude of this wave in mm Find the speed of motion of the wave in m/s Find the direction of motion of the wave. Express your answer as "+x" or "-x".
An object moves with constant speed in the x-direction, but in the y-direction it is subject...
An object moves with constant speed in the x-direction, but in the y-direction it is subject to an acceleration that increases linearly with time: a(t)=bt, where b is a constant. Assume there is no gravity. Derive an equation analogous to y=xtanθ−(g/2V^2cos^2θ0)x^2 giving the object's trajectory in this situation. Note that θ0θ0 is the angle measured from the horizontal, at which the projectile is launched, and v0v0 is its initial speed. Assume the object starts moving from the origin. Express your...
A velocity vector 55 ∘ above the positive x-axis has a y-component of 11 m/s ....
A velocity vector 55 ∘ above the positive x-axis has a y-component of 11 m/s . Part A What is the value of its x-component? Express your answer using two significant figures. vx =   m/s   SubmitRequest Answer
A particle is at the position (x,y,z)=(1.0,2.0,3.5)m. It is traveling with a vector velocity (−5.2,2.6,−3.0)m/s. Its...
A particle is at the position (x,y,z)=(1.0,2.0,3.5)m. It is traveling with a vector velocity (−5.2,2.6,−3.0)m/s. Its mass is 3.8 kg . (PART A)What is its vector angular momentum about the origin? Find the x-component. (Express your answer using two significant figures.) (PART B) Find the y-component. Express your answer using two significant figures. (PART C) Find the z -component. Express your answer using two significant figures.