Question

A computer hard disk 8.0 cm in diameter is initially at rest. A small dot is...

A computer hard disk 8.0 cm in diameter is initially at rest. A small dot is painted on the edge of the disk. The disk accelerates at 510 rad/s2 for 12s, then coasts at a steady angular velocity for another 12s.

What is the speed of the dot at t = 1.0 s? Express your answer to two significant figures and include the appropriate units.

Through how many revolutions has it turned? Express your answer using two significant figures.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A computer hard disk 8.0 cm in diameter is initially at rest. A small dot is...
A computer hard disk 8.0 cm in diameter is initially at rest. A small dot is painted on the edge of the disk. The disk accelerates at 700 rad/s2 for 12s, then coasts at a steady angular velocity for another 12s. What is the speed of the dot at t = 1.0 s? Through how many revolutions has it turned?
A computer hard disk 8.0 cm in diameter is initially at rest. A small dot is...
A computer hard disk 8.0 cm in diameter is initially at rest. A small dot is painted on the edge of the disk. The disk accelerates at 630 rad/s 2   for 1 2  s , then coasts at a steady angular velocity for another 1 2  s . Part A What is the speed of the dot at t = 1.0 s ? Express your answer to two significant figures and include the appropriate units. Part B Through how many revolutions has...
A computer hard disk starts from rest, then speeds up with an angular acceleration of 180...
A computer hard disk starts from rest, then speeds up with an angular acceleration of 180 rad/s2 until it reaches its final angular speed of 7400rpm. how many revolutions has the disk made 14 seconds after it starts up?
A computer hard disk starts from rest, then speeds up with an angular acceleration of 210...
A computer hard disk starts from rest, then speeds up with an angular acceleration of 210 rad/ s^2 for 5.0 s until it reaches its final angular speed. It rotates for another 6.0 s at that constant angular speed. It then slows down and comes to rest in 9.0 s. A. determine the angular speed of the disk 5.0 s after start up. Express your answer in rad/s and rpm (rev/min). B. determine the angular speed of the disk 11.0...
Two 10-cm-diameter charged disks face each other, 20 cm apart. The left disk is charged to...
Two 10-cm-diameter charged disks face each other, 20 cm apart. The left disk is charged to - 50 nC and the right disk is charged to + 50 nC . Part A What is the electric field E⃗ , both magnitude and direction, at the midpoint between the two disks? Express your answer using two significant figures. Part B To the left disk. To the right disk. Parallel to the plane of the disks. SubmitRequest Answer Part C What is...
A 66-cm-diameter wheel accelerates uniformly about its center from 120 rpm to 280 rpmrpm rpm in...
A 66-cm-diameter wheel accelerates uniformly about its center from 120 rpm to 280 rpmrpm rpm in 4.6 s . A.Determine its angular acceleration. Express your answer using two significant figures. B. Determine the radial component of the linear acceleration of a point on the edge of the wheel 2.0 s after it has started accelerating. Express your answer using two significant figures. c. Determine the tangential component of the linear acceleration of a point on the edge of the wheel...
A 47-cm-diameter wheel accelerates uniformly about its center from 140 rpm to 350 rpm in 5.0...
A 47-cm-diameter wheel accelerates uniformly about its center from 140 rpm to 350 rpm in 5.0 s . A) Determine its angular acceleration. Express your answer using two significant figures. B) Determine the radial component of the linear acceleration of a point on the edge of the wheel 1.9 s after it has started accelerating. Express your answer to two significant figures and include the appropriate units. C) Determine the tangential component of the linear acceleration of a point on...
A flying disk (150 g, 25.0 cm in diameter) spins at a rate of 290 rpm...
A flying disk (150 g, 25.0 cm in diameter) spins at a rate of 290 rpm with its center balanced on a fingertip. What is the rotational kinetic energy of the Frisbee if the disc has 70% of its mass on the outer edge (basically a thin ring 25.0-cm in diameter) and the remaining 30% is a nearly flat disk 25.0-cm in diameter? 1)What is the rotational kinetic energy of the Frisbee? (Express your answer to two significant figures.)
A 73-cm-diameter wheel accelerates uniformly about its center from 150 rpm to 400 rpm in 3.7...
A 73-cm-diameter wheel accelerates uniformly about its center from 150 rpm to 400 rpm in 3.7 s. Part A Determine its angular acceleration. Express your answer using two significant figures. Part B Determine the radial component of the linear acceleration of a point on the edge of the wheel 1.2 s after it has started accelerating. Express your answer to two significant figures and include the appropriate units. Part C Determine the tangential component of the linear acceleration of a...
A grinding wheel 0.27 m in diameter rotates at 2700 rpm . A) Calculate its angular...
A grinding wheel 0.27 m in diameter rotates at 2700 rpm . A) Calculate its angular velocity in rad/s. w = B) What is the linear speed of a point on the edge of the grinding wheel? Express your answer to two significant figures and include the appropriate units. v= C) What is the acceleration of a point on the edge of the grinding wheel? Express your answer to two significant figures and include the appropriate units. aR =