Question

Raindrops acquire an electric charge as they fall. Suppose a 2.2-mm-diameter drop has a charge of...

Raindrops acquire an electric charge as they fall. Suppose a 2.2-mm-diameter drop has a charge of +12 pC. If the strength of the earth's electric field is 100 N/C, how does the magnitude of the electric force on the droplet compare to the weight force?

Homework Answers

Answer #1

The magnitude of the electric force on the droplet is
   
And the mass of the droplet is
  
Now for given R = 2.2/2 = 1.1 mm, and
  
So, the mass of the droplet

  
So, the gravitational force on the droplet is

So, the ratio of the two forces is

  

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An electric field has an electric field strength 6000. N/C at a distance of 1.5 m....
An electric field has an electric field strength 6000. N/C at a distance of 1.5 m. What is the strength of the field at a distance of 6.0 m? 24. An alpha (α) particle is positioned in an electric field such that the gravitational force acting on it is equal to the electrostatic force.              (qα = 3.2 x 10–19 C and mα = 6.64 x 10–27 kg) a) What is the direction of the electric field at this point?...
The Millikan oil drop experiment of 1909 allowed Robert A. Millikan to determine the charge of...
The Millikan oil drop experiment of 1909 allowed Robert A. Millikan to determine the charge of an electron. In the experiment, an oil drop is suspended between two charged plates by an electric force that equals the gravitational force acting on the 2.07 x 10-14 kg drop. a) What is the gravitational force on this oil drop? b) What is the Electric force on the charge? c) What is the charge on the drop if the electric field is 1.72...
A water-filled parallel plate capacitor has a plate area of 2.2 cm2 and plate separation of...
A water-filled parallel plate capacitor has a plate area of 2.2 cm2 and plate separation of 2.5 mm. The potential difference between its plates is held at 7.0 V. Calculate the magnitude of the electric field between its plates, the charge stored on each plate, and the charge stored on each plate after water is replaced by air. (a) the magnitude of the electric field between its plates -------------V/m (b) the charge stored on each plate ----------- nC (c) the...
A water-filled parallel plate capacitor has a plate area of 2.2 cm2 and plate separation of...
A water-filled parallel plate capacitor has a plate area of 2.2 cm2 and plate separation of 2.5 mm. The potential difference between its plates is held at 7.0 V. Calculate the magnitude of the electric field between its plates, the charge stored on each plate, and the charge stored on each plate after water is replaced by air. (a) the magnitude of the electric field between its plates -------------V/m (b) the charge stored on each plate ----------- nC (c) the...
Two 2.2-cm-diameter-disks spaced 1.9 mm apart form a parallel-plate capacitor. The electric field between the disks...
Two 2.2-cm-diameter-disks spaced 1.9 mm apart form a parallel-plate capacitor. The electric field between the disks is 4.8×105 V/m . a) How much charge is on each disk? b) An electron is launched from the negative plate. It strikes the positive plate at a speed of 2.0×107 m/s . What was the electron's speed as it left the negative plate?
An air-filled parallel-plate capacitor has plates of area 0.47 cm2 separated by 4.1 mm. The capacitor...
An air-filled parallel-plate capacitor has plates of area 0.47 cm2 separated by 4.1 mm. The capacitor is conected to a 12-V battery. (a) Find the value of its capacitance 0.355  F 0.152  F 0.072  F 0.101  F (b) What is the charge on the capacitor? 0.008  C 1.217  C 1.826  C 12.00  C (c) What is the magnitude of the uniform electric field between the plates? 3.42 N/C 2,926.83 N/C 1,463.41 N/C 12 N/C (d) Find the magnitude of the charge density on each plate. 1.363 C/m2 7.382...
Suppose a small ball has charge -2.6 muC is located at the origin, and a second...
Suppose a small ball has charge -2.6 muC is located at the origin, and a second small ball has charge 6.8 muC is located along the x-axis at +6.5 cm. (a) What is the x-component of the force on the ball at the origin? Be sure to use the correct sign to represent the direction of the component, + for "to the right", - for "to the left". (b) What is the x-component of the force on the ball located...
2. Suppose you have two small pith balls that are 6.5 cm apart and have equal...
2. Suppose you have two small pith balls that are 6.5 cm apart and have equal charges of -27 nC? What is the magnitude of the repulsive force, in newtons, between the two pith balls? 3. Suppose you have two point charges each of 72 NC. How many millimeters apart must the two charges be to have a force of 1.05 N between them? 4. A free electron is suspended in an electric field near the surface of the Earth....
In a constant uniform electric field, a particle with charge −100 ?? is moved from the...
In a constant uniform electric field, a particle with charge −100 ?? is moved from the origin a distance ? = 0.80 ? straight in the direction of the electric field lines. The field has a strength of 5.0 ? ? . a) What is the voltage difference between the initial and final position? b) How much work is done to move the charge? c) Does the charge gain or lose electrical potential energy in the process of this move?...
2) What are the magnitude and direction of the electric force on charge C in the...
2) What are the magnitude and direction of the electric force on charge C in the figure attached? Express the direction by using + or - signs.(Example: +2.3N, -5.2 N) 3) What is the strength (magnitude) of the electric field at the position indicated by the dot in the figure attached? 4) A parallel-plate capacitor consists of two plates, each with an area of 36 cm2, separated by 9.0 mm. The charge on the capacitor is 2.1 nC. An electron...