Question

A moving 3.70kg block collides with a horizontal spring whose spring constant is 363 N/m. The...

A moving 3.70kg block collides with a horizontal spring whose spring constant is 363 N/m. The block compresses the spring a maximum distance of 13.50cm from its rest postion. The coefficient of kinetic friction between the block and the horizontal surface is 0.310. a) What is the work done by the spring in bringing the block to rest? Hint: "be careful about the sign of the work! Is it positive or negative?" b) How much mechanical energy is being dissipated by the force of friction while the block is being brought to rest by the spring? c) What is the speed of the block when it hits the spring?

Homework Answers

Answer #1

Part A.

Using work-energy theorem:

Work-done by spring = Change in spring energy

Ws = 0.5*k*xf^2 - 0.5*k*xi^2

xi = 0 m and xf = 13.50 cm =0.135 m

k = spring constat = 363 N/m

So,

Ws = 0.5*363*0.135^2 - 0.5*363*0^2

Ws = 3.31 J

Part B.

Work-done by frictional force will be

Wf = Ff*d

Wf = uk*N*d

Wf = uk*m*g*d

Wf = 0.310*3.70*9.81*0.135

Wf = 1.52 J

Part C.

Again Using work-energy theorem:

Total Work = Change in kinetic energy

W = Ws + Wf = 3.31 + 1.52

dKE = KEf - KEi

KEi = 0, since initially at rest

W = KEf

3.31 + 1.52 = 0.5*m*Vf^2

Vf = sqrt [2*(3.31 + 1.52)/3.70]

Vf = 1.62 m/sec

Please Upvote.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Course Contents » ... » Set 04 (10/09 Tu 10 PM) » Block and a spring...
Course Contents » ... » Set 04 (10/09 Tu 10 PM) » Block and a spring A moving 4.40 kg block collides with a horizontal spring whose spring constant is 433 N/m. The block compresses the spring a maximum distance of 13.50 cm from its rest position. The coefficient of kinetic friction between the block and the horizontal surface is 0.450. What is the work done by the spring in bringing the block to rest? How much mechanical energy is...
A 2.5-kg block is sliding along a rough horizontal surface and collides with a horizontal spring...
A 2.5-kg block is sliding along a rough horizontal surface and collides with a horizontal spring whose spring constant is 320 N/m. Unstretched, the spring is 20.0 cm long. The block causes the spring to compress to a length of 12.5 cm as the block temporarily comes to rest. The coefficient of kinetic friction between the block and the horizontal surface is 0.25. a) How much work is done by the spring as it brings the block to rest? b)...
. A block of mass 2.00 kg is attached to a horizontal spring with a force...
. A block of mass 2.00 kg is attached to a horizontal spring with a force constant of 500 N/m. The spring is stretched 5.00 cm from its equilibrium position and released from rest. Use conservation of mechanical energy to determine the speed of the block as it returns to equilibrium (a) if the surface is frictionless (b) if the coefficient of kinetic friction between the block and the surface is 0.350
A 500 g block, sliding on horizontal surface, collides head-on, and sticks to, a 200 g...
A 500 g block, sliding on horizontal surface, collides head-on, and sticks to, a 200 g block at rest. A) Find the speed of the combination after the collision if the 500 g block was was moving at 5.00 m/s before the collision. B) If the coefficient of kinetic friction between the blocks and the floor is 0.315, how much further with the blocks go before stopping?
A 725 g block is dropped onto a vertical spring with spring constant k = 240...
A 725 g block is dropped onto a vertical spring with spring constant k = 240 N/m. The block becomes attached to the spring, and the spring compresses 35.7 cm before momentarily stopping. a)While the spring is being compressed, what work is done on the block by its weight? b)While the spring is being compressed, what work is done on the block by the spring force? c)What is the speed of the block just before it hits the spring?(Assume that...
A 100 ? / ? constant spring horizontal spring compresses 20 ?? and is used to...
A 100 ? / ? constant spring horizontal spring compresses 20 ?? and is used to launch a 2.5 ?? box across a horizontal surface without friction. After the box travels a certain distance, the surface becomes rough. The coefficient of kinetic friction of the box on the surface is 0.15. Determine how far the box slides on the rough surface before stopping.
A block with a mass m = 2.12 kg is pushed into an ideal spring whose...
A block with a mass m = 2.12 kg is pushed into an ideal spring whose spring constant is k = 3810 N/m. The spring is compressed x = 0.069 m and released. After losing contact with the spring, the block slides a distance of d = 2.07 m across the floor before coming to rest. a) Write an expression for the coefficient of kinetic friction between the block and the floor using the symbols given in the problem statement...
A 350-g block is dropped onto a vertical spring with spring constant k =110.0 N/m. The...
A 350-g block is dropped onto a vertical spring with spring constant k =110.0 N/m. The block becomes attached to the spring, and the spring compresses 50.6 cm before momentarily stopping. The speed just before the block hits the spring is 8.4 m/s. The work done by the spring force is -14.1J. The work done by weight is 1.74 J. If the speed at impact is doubled, what is the maximum compression of the spring
A 0.2 kg block compresses a spring of spring constant 1900 N/m by 0.18 m. After...
A 0.2 kg block compresses a spring of spring constant 1900 N/m by 0.18 m. After being released from rest, the block slides along a smooth, horizontal and frictionless surface before colliding elastically with a 1.4 kg block which is at rest. (Assume the initial direction of motion of the sliding block before the collision is positive.) A: What is the velocity of the 0.2 kg block just before striking the 1.4 kg block? B: What is the velocity of...
A 195-g block is pressed against a spring of force constant 1.30 kN/m until the block...
A 195-g block is pressed against a spring of force constant 1.30 kN/m until the block compresses the spring 10.0 cm. The spring rests at the bottom of a ramp inclined at 60.0° to the horizontal. Using energy considerations, determine how far up the incline the block moves from its initial position before it stops under the following conditions. (a) if the ramp exerts no friction force on the block m (b) if the coefficient of kinetic friction is 0.366...