Question

The current in a 1.10 mm × 1.10 mm square aluminum wire is 2.80 A ....

The current in a 1.10 mm × 1.10 mm square aluminum wire is 2.80 A .

Part A

Part complete

What is the current density?

2.31×106

  A/m2  

Part B

What is the electron drift speed?

______  μm/s  

Homework Answers

Answer #1

(a) To find current density (J), the equation is just J = I / A, where I = the current and A is the area of the surface.

In this case

I = 2.8 Amp

and the cross sectional area A isn't given, but you can find it using 1.1mm x 1.1mm.

Don't forget though to convert mm into m before dividing the current by area, to get m^2. (1000mm = 1m -> 1.1mm = 0.0011m)

A = 0.0011m(0.0011m) = 1.21E-6

Thus, you have J = (2.8A) / (1.21E-6) = 2.31*10^6 A/m^2.

(b) The electron drift speed can be found using this equation:

v = J/nq, where v is the drift speed you are trying to find, J is the density you just found, q = the charge of an electron, and n = the number of charges carried per unit volume (the electron density).

For aluminum n = 6.02E28 electrons/m^3

So

v = (2.31*10^6) / ((6.02E28)(1.6E-19) in m/s

v = 2.4E-4 m/s

= 240 um/s

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An aluminum wire with a diameter of 0.105 mm has a uniform electric field of 0.265...
An aluminum wire with a diameter of 0.105 mm has a uniform electric field of 0.265 V/m imposed along its entire length. The temperature of the wire is 45.0° C. Assume one free electron per atom. (a) Use the information in this Table of Resistivities and Temperature Coefficients to determine the resistivity of aluminum at this temperature. ρ = ..... Ω·m (b) What is the current density in the wire? J =....... MA / m2 (c) What is the total...
An aluminum wire with a diameter of 0.095 mm has a uniform electric field of 0.225...
An aluminum wire with a diameter of 0.095 mm has a uniform electric field of 0.225 V/m imposed along its entire length. The temperature of the wire is 45.0° C. Assume one free electron per atom. (a) Use the information in this Table of Resistivities and Temperature Coefficients to determine the resistivity of aluminum at this temperature. ρ =  Ω·m (b) What is the current density in the wire? J =  MA / m2 (c) What is the total current in the...
An aluminum wire having a cross-sectional area of 3.10 ✕ 10−6 m2 carries a current of...
An aluminum wire having a cross-sectional area of 3.10 ✕ 10−6 m2 carries a current of 3.00 A. The density of aluminum is 2.70 g/cm3. Assume each aluminum atom supplies one conduction electron per atom. Find the drift speed of the electrons in the wire.
A 7.2 mm diameter conducting wire carries a current of 3.8 A. If the density of...
A 7.2 mm diameter conducting wire carries a current of 3.8 A. If the density of the conduction electrons (free electrons) in the wire is n=19.6×1028m-3, determine the magnitude of the drift velocity of the electrons within the wire. Express your answer in units of μm/s (micrometers per second) using one decimal place. Take the charge of the electron e=1.6×10-19C.
a) A student measured the voltage across and current through an aluminum wire using a voltmeter...
a) A student measured the voltage across and current through an aluminum wire using a voltmeter and ammeter. The power supply was a battery. Sketch the circuit and how the student attached the meters to make her measurements. b) Here is the student's data: (0, 0), (1.01, 0.35), (1.49, 0.80), (2.67, 1.10), (3.00, 1.35). Each datum is given as a (volts, amps) pair. Make a scatter plot of current versus voltage. Label your axes appropriately. Find the best estimate of...
A copper wire that has a diameter of 2.00 mm carries a current of 10.0 A....
A copper wire that has a diameter of 2.00 mm carries a current of 10.0 A. Assuming that each copper atom contributes one free electron to the metal, calculate the drift speed of the electrons in the wire. The molar mass of copper is 63.5 g/mol and the density of copper is 8.95 g/cm3.
There is a wire made of copper with a diameter of 3.26 mm. A current of...
There is a wire made of copper with a diameter of 3.26 mm. A current of 20.0 A was applied to this wire. Answer the following question assuming that the electron density of copper is n = 8.47 × 1028 m-3. (1) Find the current density. (2) Find the electron drift velocity. (3) When the resistivity of copper is 1.70 × 10-8 Ω·m, find the voltage drop that occurs along the length of this wire. (4) Find the electron mobility.
Consider a copper wire with a diameter of 1.67 mm. (a) What is the drift speed...
Consider a copper wire with a diameter of 1.67 mm. (a) What is the drift speed of the electrons in the copper wire when a current of 14.0 A flows through it? Assume that each copper atom contributes one free electron to the metal. The density of copper is 8.92 g/cm3. (b) How does this drift speed compare to the random rms speed of an electron at 20.0°C? To make this comparison, determine the random rms speed of an electron...
A copper wire with diameter of 1,5 mm and length of 4m carries constant current of...
A copper wire with diameter of 1,5 mm and length of 4m carries constant current of 1.75 A. The free electron density in the wire is 8,5x1028 m-3. The resistivity of copper is 1,72x10-8 capital omega.m. Calculate a) current density, b)drift velocity, c) magnitude of electric field, d) potential between the terminals of wire, e)power dissipated as heat f) mean free time. (mass of electron: 9,1x10-31kg, magnitude of charge of electron: 1,6x10-19 C)
A copper wire with diameter of 1,5 mm and length of 4m carries constant current of...
A copper wire with diameter of 1,5 mm and length of 4m carries constant current of 1.75 A. The free electron density in the wire is 8,5x1028 m-3. The resistivity of copper is 1,72x10-8 .m. Calculate   a) current density, b)drift velocity, c) magnitude of electric field, d) potential between the terminals of wire, e)power dissipated as heat f) mean free time. (mass of electron: 9,1x10-31kg, magnitude of charge of electron: 1,6x10-19 C)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT