Question

A circular loop of radius 11.9 cm is placed in a uniform magnetic field. (a) If...

A circular loop of radius 11.9 cm is placed in a uniform magnetic field.

(a) If the field is directed perpendicular to the plane of the loop and the magnetic flux through the loop is 7.40 ✕ 10−3 T · m2, what is the strength of the magnetic field?
T

(b) If the magnetic field is directed parallel to the plane of the loop, what is the magnetic flux through the loop?
T · m2

Homework Answers

Answer #1

Here it is given that magnetic field is directed perpendicularly to the plane , so flux will be maximum, Since the angle between normal to the loop and magnetic field θ=0

MAGNETIC FLUX,
Φ =BACos θ
Here θ=0 . Therefore

MAGNETIC FLUX,
Φ = BA, where B= magnetic field, A=area

Now we have given value of flux

Φ =7.40×10-3Tm2

Now we have radius r=11.9cm=0.119m

Therefore area A=πr²=π×(0.119)²=0.04446m²

Cos0°=1

Substituting all the values

Φ =BACos0°

7.40×10-3=B×0.04446

B=7.40×10-3/0.04446

B=0.16644=166.44×103T

b) since magnetic field is parallel to the plane therefore the value of θ=90° which causes the flux to be minimum as zero since cos90=0

Therefore, flux through the loop is zero

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
13. A 12-cm-diameter circular loop of wire is placed in a 1.19-T magnetic field. a.) When...
13. A 12-cm-diameter circular loop of wire is placed in a 1.19-T magnetic field. a.) When the plane of the loop is perpendicular to the field lines, what is the magnetic flux through the loop? b.) The plane of the loop is rotated until it makes a 35 ∘ angle with the field lines. What is the angle in the equation ΦB = BAcosθ for this situation? c.) What is the magnetic flux through the loop at this angle?
A circular loop of wire is perpendicular to a 0.16 T uniform magnetic field. The magnetic...
A circular loop of wire is perpendicular to a 0.16 T uniform magnetic field. The magnetic flux through the loop is 24 mWb. What is the radius of the loop?
A 20 turn loop is immersed in a magnetic field that’s spatially uniform and varies in...
A 20 turn loop is immersed in a magnetic field that’s spatially uniform and varies in strength. Initially, the plane of the loop is perpendicular to the magnetic field. At t= 0 s, the loop starts to rotate so that 1.00 s later, the plane of the loop is parallel to the magnetic field, thus rotating so that it completes one rotation in 4.00 s. The magnetic field strength varies according to ?=1.20?^(−?1.90)T. The loop’s radius is 12.0 cm. What...
A 50 cm × 85 cm rectangular loop of wire is located in a region of...
A 50 cm × 85 cm rectangular loop of wire is located in a region of uniform magnetic field with a magnitude of B​0​​=3.32 Telsa, and oriented perpendicular to the wire loop. The wire is reshaped into a circular loop of radius r = 43 cm. What is the change in the magnitude of the the magnetic flux through the loop as a result of this change in shape? 2. A 60 cm×60 cm square loop of wire is placed...
A circular loop, of radius 15 cm and negligible resistance, is sitting in a perpendicular magnetic...
A circular loop, of radius 15 cm and negligible resistance, is sitting in a perpendicular magnetic field of 0.1 T. If the magnetic field strength changes to a value of 0.5 T in 0.5 s, calculate the induced current in the loop if it is in series with a 20 ohm resistor. 5.7 × 10–2 A 1.2 × 10–2 A 2.8 × 10–3 A 6.0 × 10–4 A 1.1 A
A 37-turn circular coil of radius 4.60 cm and resistance 1.00 Ω is placed in a magnetic field directed perpendicular to...
A 37-turn circular coil of radius 4.60 cm and resistance 1.00 Ω is placed in a magnetic field directed perpendicular to the plane of the coil. The magnitude of the magnetic field varies in time according to the expression B = 0.010 0t + 0.040 0t2, where B is in teslas and t is in seconds. Calculate the induced emf in the coil at t = 4.20 s.
A steady current, I, flows along a circular loop generating a uniform magnetic field of 0.1T...
A steady current, I, flows along a circular loop generating a uniform magnetic field of 0.1T perpendicular to the plane of the loop, and a magnetic flux through the loop of 10-4 weber. Within a short time interval, the current and the magnetic flux both drop to zero. Based on the given information, find: (a) The initial current in the loop, (b) the inductance of the loop, and (c) the potential energy associated with the initial conditions of steady current....
A circular wire loop with a radius of 10 cm is placed in a magnetic field...
A circular wire loop with a radius of 10 cm is placed in a magnetic field of 1.0 T that is parallel to its axis into the page. The loop is stretched to half of its initial area within a time of 0.1 seconds. What is the induced voltage and the direction of induced current? (a) 157 mV, clockwise current (b) 120 mV, counter clockwise current (c) 79 mV, clockwise current (d) 0 V, no current The answer is A...
A circular wire loop whose radius is 16.0 cm carries a current of 2.58 A. It...
A circular wire loop whose radius is 16.0 cm carries a current of 2.58 A. It is placed so that the normal to its plane makes an angle of 41.0° with a uniform magnetic field of 1.20 T. The initial torque on the current loop will make the magnetic dipole moment vector Will it?: A. Try to align against the magnetic field B. Try to align with the magnetic field. C .There will be no torque on the loop Then...
A 149-turn circular coil of radius 2.67 cm is immersed in a uniform magnetic field that...
A 149-turn circular coil of radius 2.67 cm is immersed in a uniform magnetic field that is perpendicular to the plane of the coil. During 0.153 s the magnetic field strength increases from 51.1 mT to 99.3 mT. Find the magnitude of the average EMF, in millivolts, that is induced in the coil during this time interval.