Question

A beam of protons traveling at 1.40 km/s enters a uniform magnetic field, traveling perpendicular to...

A beam of protons traveling at 1.40 km/s enters a uniform magnetic field, traveling perpendicular to the field. The beam exits the magnetic field in a direction perpendicular to its original direction (Figure 1). The beam travels a distance of 1.70 cm while in the field.

What is the magnitude of the magnetic field? Express your answer in teslas to three significant figures.

Homework Answers

Answer #1

since field is perpendicula to velocity
so, motion is circular motion

also, it comes out of field with velocity perpendicular to its intial velocity
so, it travel quarter circle
so,
distance travel = (3.14*r)/2
1.70 = (3.14*r)/2
r = 1.08 cm
= 0.0108 m

given,
v = 1.40 km/s
= 1400 m/s
m = mass of proton
= (1.67*10^-27) Kg

use,
B = (m*v)/(q*r)
= (1.67*10^-27*1400)/(1.6*10^-19*0.0108)
= (2338*10^-27)/(0.01728*10^-19)
= (1.35*10^-3) tesla

Answer: (1.35*10^-3) tesla

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A beam of protons traveling at 1.20 km/s enters a uniform magnetic field, traveling perpendicular to...
A beam of protons traveling at 1.20 km/s enters a uniform magnetic field, traveling perpendicular to the field. The beam exits the magnetic field, leaving the field in a direction perpendicular to its original direction (the figure (Figure 1)). The beam travels a distance of 1.10 cm while in the field. a. What is the magnitude of the magnetic field?
A proton traveling at 4.20 km/s suddenly enters a uniform magnetic field of 0.770 T ,...
A proton traveling at 4.20 km/s suddenly enters a uniform magnetic field of 0.770 T , traveling at an angle of 55.0 ∘ with the field lines a) Find the magnitude of the force this magnetic field exerts on the proton. Express your answer in newtons to three significant figures. b) If you can vary the direction of the proton's velocity, find the magnitude of the maximum force you could achieve. Express your answer in newtons to three significant figures....
A beam of protons is moving in the +x direction with a speed of 13 km/s...
A beam of protons is moving in the +x direction with a speed of 13 km/s through a region in which the electric field is perpendicular to the magnetic field. The beam of protons is not deflected in this region. The magnetic field has a magnitude of 0.8 T and points in the +y direction. Therefore, the magnitude of the electric field is 11.570 V/m (= (13 x 10³ m/s) (0.8T)) and the direction is along the negative z-axis. What...
A beam of protons is accelerated through a potential difference of 0.750kV and then enters a...
A beam of protons is accelerated through a potential difference of 0.750kV and then enters a uniform magnetic field traveling perpendicular to the field. a.What magnitude of field is needed to bend these protons in a circular arc of diameter 1.74m ? b.What magnetic field would be needed to produce a path with the same diameter if the particles were electrons having the same speed as the protons?
A beam of protons is accelerated easterly from rest through a potential difference of 5.0kV ....
A beam of protons is accelerated easterly from rest through a potential difference of 5.0kV . It enters a region where there exists an upward pointing uniform electric field. This field is created by two parallel plates separated by 15cm with a potential difference of 250 V across them. PART A What is the speed of the protons as they enter the electric field? Express your answer using two significant figures. PART B Find the magnitude of the magnetic field...
Constants In (Figure 1), a beam of protons moves through a uniform magnetic field with magnitude...
Constants In (Figure 1), a beam of protons moves through a uniform magnetic field with magnitude 2.0 T , directed along the positive z axis. The protons have a velocity of magnitude 3.0×105 m/s in the x-z plane at an angle of 30 ∘ to the positive z axis. Find the force on a proton. The charge of the proton is q=+1.6×10−19C. SOLUTION SET UP We use the right-hand rule to find the direction of the force. The force acts...
An alpha particle (a He nucleus, containing two protons and two neutrons and having a mass...
An alpha particle (a He nucleus, containing two protons and two neutrons and having a mass of 6.64×10−27 kg ) traveling horizontally at 34.8 km/s enters a uniform, vertical, 1.08 T magnetic field. Part A What is the diameter of the path followed by this alpha particle? Express your answer in millimeters to three significant figures. ANSWER: d = ______   mm   Part C What is the magnitude of the acceleration of the alpha particle while it is in the magnetic...
A 26.8 cm-diameter loop of wire is initially oriented perpendicular to a 1.6 T magnetic field....
A 26.8 cm-diameter loop of wire is initially oriented perpendicular to a 1.6 T magnetic field. The loop is rotated so that its plane is parallel to the field direction in 0.22 s . What is the magnitude of the average induced emf in the loop? Express your answer using two significant figures. Eavg=    V
A beam of electrons traveling horizontally with an initial speed of vi = 3.0 x 107...
A beam of electrons traveling horizontally with an initial speed of vi = 3.0 x 107 m/s enters a uniform, vertically upward electric field with magnitude E = 2.0 x 104 N/C between the deflection plates of an oscilloscope, as shown in the figure. The initial velocity of the electrons is perpendicular to the field. The plates are d = 4.0 cm long. Ignoring all forces apart from the electrostatic interactions, calculate the magnitude and direction of the velocity of...
2. Proton beam: A beam of protons is fired with a velocity v = 4.0 ×...
2. Proton beam: A beam of protons is fired with a velocity v = 4.0 × 105m/s into a region of uniform magnetic field with B = 230 Gauss, pointing out of the page. a) How far does the beam penetrate into the field region? b) A uniform electric field is also turned on. What magnitude and direction for E will allow the protons to pass through undeflected? c) A square loop with 100 windings 10 cm on each side...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT