Question

A circular saw blade with radius 0.190 m starts from rest and turns in a vertical...

A circular saw blade with radius 0.190 m starts from rest and turns in a vertical plane with a constant angular acceleration of 2.00 rev/s2. After the blade has turned through 155 rev, a small piece of the blade breaks loose from the top of the blade. After the piece breaks loose, it travels with a velocity that is initially horizontal and equal to the tangential velocity of the rim of the blade. The piece travels a vertical distance of 0.820 m to the floor. How far does the piece travel horizontally, from where it broke off the blade until it strikes the floor?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A flywheel with a radius of 0.200 m starts from rest and accelerates with a constant...
A flywheel with a radius of 0.200 m starts from rest and accelerates with a constant angular acceleration of 0.400 rad/s2 . a)Compute the magnitude of the tangential acceleration of a point on its rim at the start. b)Compute the magnitude of the radial acceleration of a point on its rim at the start. -------------------- c) Compute the magnitude of the tangential acceleration of a point on its rim after it has turned through 60.0 ∘. d)Compute the magnitude of...
A flywheel with a radius of 0.500 m starts from rest and accelerates with a constant...
A flywheel with a radius of 0.500 m starts from rest and accelerates with a constant angular acceleration of 0.700 rad/s2 . 1.Compute the magnitude of the tangential acceleration of a point on its rim at the start. 2.Compute the magnitude of the radial acceleration of a point on its rim at the start. 3.Compute the magnitude of the tangential acceleration of a point on its rim after it has turned through 60.0 ?. 4.Compute the magnitude of the radial...
A flywheel with a radius of .340 m starts from rest and accelerates with a constant...
A flywheel with a radius of .340 m starts from rest and accelerates with a constant angular acceleration of .730 rad/ s2. A) compute the magnitude of the tangential acceleration, the radial acceleration, and the resultant acceleration of a point on its rim at the start. B) compute the magnitude of the tangential acceleration, the radial acceleration, and the resultant acceleration of a point on its rim after it has turned through 60.0. C) compute the magnitude of the tangential...
A flywheel with a radius of 0.200 m starts from rest and accelerates with a constant...
A flywheel with a radius of 0.200 m starts from rest and accelerates with a constant angular acceleration of 0.400 rad/s2 . Compute the magnitude of the radial acceleration of a point on its rim after it has turned through 60.0 ?. Compute the magnitude of the tangential acceleration of a point on its rim after it has turned through 120.0 ?. Compute the magnitude of the radial acceleration of a point on its rim after it has turned through...
When a carpenter shuts off his circular saw, the 10.0-inch diameter blade slows from 4210 rpm...
When a carpenter shuts off his circular saw, the 10.0-inch diameter blade slows from 4210 rpm to zero in 3.00 s . A. What is the angular acceleration of the blade? α =   rev/s2   Part B What is the distance traveled by a point on the rim of the blade during the deceleration? s =   ft Part C What is the magnitude of the net displacement of a point on the rim of the blade during the deceleration? d =   in
A circular saw blade accelerates from rest to an angular speed of 3620 rpm in 6.30...
A circular saw blade accelerates from rest to an angular speed of 3620 rpm in 6.30 revolutions. A) Find the torque exerted on the saw blade, assuming it is a disk of radius 17.2 cm and mass 0.735 kg . B) Explain your response. C) Find the angular speed of the blade after 3.15 revolutions.
A flywheel with a radius of 0.500 m starts from rest and accelerates with a constant...
A flywheel with a radius of 0.500 m starts from rest and accelerates with a constant angular acceleration of 0.800 rad/s2 . 1) Compute the magnitude of the resultant acceleration of a point on its rim after it has turned through 60.0. (m/s^2) 2) Compute the magnitude of the resultant acceleration of a point on its rim after it has turned through 120.0. (m/s^2)
A flywheel with a radius of 0.360 mm starts from rest and accelerates with a constant...
A flywheel with a radius of 0.360 mm starts from rest and accelerates with a constant angular acceleration of 0.610 rad/s2 Part A Compute the magnitude of the tangential acceleration, the radial acceleration, and the resultant acceleration of a point on its rim at the start. Enter your answers separated with commas. Part B Compute the magnitude of the tangential acceleration, the radial acceleration, and the resultant acceleration of a point on its rim after it has turned through 60.0...
A flywheel with a radius of 0.700 m starts from rest and accelerates with a constant...
A flywheel with a radius of 0.700 m starts from rest and accelerates with a constant angular acceleration of 0.500 rad/s2 . A). Compute the magnitude of the resultant acceleration of a point on its rim at the start B). Compute the magnitude of the resultant acceleration of a point on its rim after it has turned through 60.0 ∘. C). Compute the magnitude of the resultant acceleration of a point on its rim after it has turned through 120.0
An automobile moves on a circular track of radius 1.04 km. It starts from rest from...
An automobile moves on a circular track of radius 1.04 km. It starts from rest from the point (x, y) = (1.04 km, 0 km) and moves counterclockwise with a steady tangential acceleration such that it returns to the starting point with a speed of 29.2 m/s after one lap. (The origin of the Cartesian coordinate system is at the center of the circular track.) What are the car's position and velocity vectors when it is one-sixth of the way...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT