Question

How much kinetic energy does the daughter have when 147Sm undergoes α decay from rest?(in MeV)

How much kinetic energy does the daughter have when 147Sm undergoes α decay from rest?(in MeV)

Homework Answers

Answer #1

I will be glad to see your comment if you have any query and thumb up if you are satisfied. Thanks !

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
How much kinetic energy, in MeV, must an α particle have to just "touch" the surface...
How much kinetic energy, in MeV, must an α particle have to just "touch" the surface of a 23292U nucleus? Assume that the 23292U nucleus doesn't move.
1. What is the daughter nuclei produced when LaTeX: _6^{12}C6 12 C undergoes beta - decay....
1. What is the daughter nuclei produced when LaTeX: _6^{12}C6 12 C undergoes beta - decay. 2. A 65-kg worker is accidentally exposed to a 53-rad dose of gamma radiation. How much energy does the worker absorb?
How much kinetic energy does a 100 gram pendulum have when it is at the bottom...
How much kinetic energy does a 100 gram pendulum have when it is at the bottom of its swing? Assume it started from θ max = 30 deg and is 1 meter long. Show all work (hint: conservation of energy is helpful here.)
A electron is accelerated to a kinetic energy of 100 MeV at the end of a...
A electron is accelerated to a kinetic energy of 100 MeV at the end of a linac and then drifts 1.45 m to a target in the laboratory a) What is the distance from the end of the linac to the target in the rest frame of the electron? b) As measured in the laboratory, what is the velocity of the electron and how much time does it take for the electron to hit the target after it exits the...
*Proton speed The rest energy of a proton is about 938 MeV. If its kinetic energy...
*Proton speed The rest energy of a proton is about 938 MeV. If its kinetic energy is 1071 MeV, find the proton's speed as a ratio of c to 3 significant figures.
What is the daughter nucleus (nuclide) produced when 90Sr undergoes beta decay by emitting an electron?
What is the daughter nucleus (nuclide) produced when 90Sr undergoes beta decay by emitting an electron?
A uranium-238 nucleus at rest undergoes radioactive decay, splitting into an alpha particle (helium nucleus) with...
A uranium-238 nucleus at rest undergoes radioactive decay, splitting into an alpha particle (helium nucleus) with mass 6.64×10-27 kg and a thorium nucleus with mass 3.89×10-25 kg. The measured kinetic energy of the alpha particle is 7.11×10-13 J. 1) After the decay, the kinetic energy of the thorium nucleus was _________ the kinetic energy of the alpha particle. (less than, greater than or equal to.)
Consider an anti-proton (rest mass = 1.007 825 amu) whose kinetic energy is 450 MeV. •...
Consider an anti-proton (rest mass = 1.007 825 amu) whose kinetic energy is 450 MeV. • Compute the ratio v/c (particle speed divided by speed of light) using both the classical expression and the relativistic expression for kinetic energy? How much error (in %) is incurred by using the classical expression?   • Compute the magnitude of the anti-proton’s momentum using both the relativistic and classical formulas. Provide you answers in units of MeV/c.   
A uranium-238 nucleus at rest undergoes radioactive decay, splitting into an alpha particle (helium nucleus) with...
A uranium-238 nucleus at rest undergoes radioactive decay, splitting into an alpha particle (helium nucleus) with mass 6.64×10-27 kg and a thorium nucleus with mass 3.89×10-25 kg. The measured kinetic energy of the alpha particle is 4.01×10-13 J. If after the decay, the alpha particle is observed to move in the positive x direction. After the decay, what direction did the thorium nucleus move? Complete the following statement with less than, greater than or equal to. After the decay, the...
An electron and an antielectron (positron) each have a rest energy of 0.511 MeV , or...
An electron and an antielectron (positron) each have a rest energy of 0.511 MeV , or approximately 8.2×10-14 J . When an electron and a positron are both stationary and located next to each other during an annihilation process, their mass energy converts to electromagnetic energy released as photons, electromagnetic particles that have momentum but no mass and that travel at the speed of light. What is the minimum number of photons that could be released, and how much energy...