Question

A parallel plate capacitor with separation, d, is charged up to a surface charge density σ0....

A parallel plate capacitor with separation, d, is charged up to a surface charge density σ0. a) The plates are now disconnected from the charging device. The separation between the plates is now increased from d to D (D > d). How much work per unit area is done by the agent causing the increase in separation? b) When the plates are at a separation, d, and charge density σ0, they are attached to a battery that maintains the voltage fixed at the value corresponding to (d, σ0). Once again the surfaces are separated from d to D, but this time with the voltage fixed. How much work per unit area is performed by the agent causing the increase in separation? Discuss this result in the context of (a) above.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A parallel-plate capacitor is charged and then disconnected from a battery. Then, the plate separation is...
A parallel-plate capacitor is charged and then disconnected from a battery. Then, the plate separation is decreased by a factor of 4, d_new=1/4 d_old, please type in a number into the box to determine how everything changes. (If something doesn't change, please type in 1 to answer X_new= 1 X_old.) (a) By what fraction does the capacitance change? C_new=  C_old; (b) By what fraction does the amount of charge change? Q_new=  Q_old (When the battery is disconnected, the charges have no place...
A Parallel plate capacitor is charged fully using a 48 V battery such that the charge...
A Parallel plate capacitor is charged fully using a 48 V battery such that the charge on it is 230 pC and the plate separation is 3 mm. The capacitor is then disconnected from the battery and the plate separation doubled. What is: The new charge on the plates after the separation is increased     The new potential difference between the plates     The Field between the plates after increasing the separation     How much work does one have to...
A dielectric-filled parallel-plate capacitor has plate area A = 30.0 cm2 , plate separation d =...
A dielectric-filled parallel-plate capacitor has plate area A = 30.0 cm2 , plate separation d = 7.00 mm and dielectric constant k = 5.00. The capacitor is connected to a battery that creates a constant voltage V = 10.0 V . Throughout the problem, use ϵ0 = 8.85×10−12 C2/N⋅m2 . a. The dielectric plate is now slowly pulled out of the capacitor, which remains connected to the battery. Find the energy U2 of the capacitor at the moment when the...
A Parallel plate capacitor is charged fully using a 48 V battery such that the charge...
A Parallel plate capacitor is charged fully using a 48 V battery such that the charge on it is 230 pC and the plate separation is 3 mm. The capacitor is then disconnected from the battery and the plate separation doubled. How much work does one have to do to pull the plates apart.
A parallel plate capacitor of capacitance Co has plates of area A with separation d between...
A parallel plate capacitor of capacitance Co has plates of area A with separation d between them. When it is connected to a battery of voltage Vo, it has charge of magnitude Qo on its plates. It is then disconnected from the battery and the plates are pulled apart to a separation 2d without discharging them. After the plates are 2d apart, by what factor does the magnitude of the charge on the plates change? By what factor does the...
A dielectric-filled parallel-plate capacitor has plate area A = 30.0 cm2 , plate separation d =...
A dielectric-filled parallel-plate capacitor has plate area A = 30.0 cm2 , plate separation d = 8.00 mm and dielectric constant k = 4.00. The capacitor is connected to a battery that creates a constant voltage V = 5.00 V . Throughout the problem, use ϵ0 = 8.85×10−12 C2/N⋅m2 . Part A- Find the energy U1 of the dielectric-filled capacitor. Part B- The dielectric plate is now slowly pulled out of the capacitor, which remains connected to the battery. Find...
A dielectric-filled parallel-plate capacitor has plate area A = 25.0 cm2 , plate separation d =...
A dielectric-filled parallel-plate capacitor has plate area A = 25.0 cm2 , plate separation d = 7.00 mm and dielectric constant k = 5.00. The capacitor is connected to a battery that creates a constant voltage V = 15.0 V . Throughout the problem, use ϵ0 = 8.85×10−12 C2/N⋅m2 . Part A Find the energy U1 of the dielectric-filled capacitor. Part B The dielectric plate is now slowly pulled out of the capacitor, which remains connected to the battery. Find...
A parallel-plate capacitor is charged and then disconnected from a battery. Then, the plate separation is...
A parallel-plate capacitor is charged and then disconnected from a battery. Then, the plate separation is decreased by a factor of 4, d_new=1/4 d_old, please type in a number into the box to determine how everything changes. (If something doesn't change, please type in 1 to answer X_new= 1 X_old.) (a) By what fraction does the capacitance change? C_new= _________________ C_old; (b) By what fraction does the amount of charge change? Q_new= ____________________ Q_old (When the battery is disconnected, the...
A parallel-plate capacitor is charged by connection to a battery. If the battery is disconnected and...
A parallel-plate capacitor is charged by connection to a battery. If the battery is disconnected and the separation between the plates is increased, what will happen to the charge on the capacitor and the voltage across it? A) Both remain fixed. B) Both Increase. C) Both decrease. D) The charge increases and the voltage decreases. E) The charge remains fixed and the voltage increases.
A parallel-plate air capacitor of area A= 14.0 cm2 and plate separation d= 2.20 mm is...
A parallel-plate air capacitor of area A= 14.0 cm2 and plate separation d= 2.20 mm is charged by a battery to a voltage 56.0 V. If a dielectric material with κ = 4.00 is inserted so that it fills the volume between the plates (with the capacitor still connected to the battery), how much additional charge will flow from the battery onto the positive plate?