Question

# You hang a 300 g mass on a spring. a. If the spring initially stretches 6.20...

You hang a 300 g mass on a spring.
a. If the spring initially stretches 6.20 cm when you hang the mass on it, what is the spring constant?
b. How long will one oscillation take?

The spring is now oriented horizontally and attached to a glider on a frictionless air track. The glider also has a mass of 300g. You want to observe the oscillations of this spring-mass system in the lab with a motion detector. You stretch the spring so that the mass is 2.0 cm to the right of its equilibrium position and release it. You then push the start on the motion detector, but the delay is such that the mass is now 1.0 cm to the left of the equilibrium position and moving to the right at time t=0.0 s on the detector output. For the next part, use clearly labeled numerical axes.
c. Draw a position vs time graph of the mass for two cycles of the motion. Choose the equilibrium position as x=0 and the first moment the detector records as t=0.
d. Draw a velocity vs. time graph of the mass for two cycles of the motion.
e. Draw an acceleration vs. time graph of the mass for two cycles of the motion.
f. On each graph, draw a circle around the points where the Kinetic Energy of the system is zero.
g. On each graph draw a square around the points where the Potential Energy of the system is a minimum.
h. If you replace the original glider with a 600 g glider, what will be the frequency of oscillations for this new mass/spring system?

​​​​​​

#### Earn Coins

Coins can be redeemed for fabulous gifts.