Question

A flat circular coil having 15 turns, each of a radius of 18.0 cm, is in...

A flat circular coil having 15 turns, each of a radius of 18.0 cm, is in a uniform and steady 0.130-T magnetic field. The coil has a resistance of 8.00

a) Find the total magnetic flux through one turn of the coil when the field is parallel to the axis of the coil.

b) If the coil is rotated in 12.0 ms so its axis is perpendicular to the field, find the average induced voltage and the induced current in the coil.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A circular coil of wire with 5 turns and a radius of 4.0 cm lies flat...
A circular coil of wire with 5 turns and a radius of 4.0 cm lies flat on a table in a region where the magnetic field is 4.5 mT up. The coil is flipped over in a time of 0.25 s. Is an emf induced in the coil? If so, what is its average value?
A 133 turn circular coil of radius 2.77 cm is immersed in a uniform magnetic field...
A 133 turn circular coil of radius 2.77 cm is immersed in a uniform magnetic field that is perpendicular to the plane of the coil. Over an interval of 0.121 s, the magnetic field strength increases from 55.7 mT to 95.9 mT. Find the magnitude of the average emf avgEavg induced in the coil during this time interval, in millivolts. avg=Eavg= ?
A coil 5.00 cm in radius, containing 250 turns, is placed in a uniform magnetic field...
A coil 5.00 cm in radius, containing 250 turns, is placed in a uniform magnetic field that varies with time according to: B = (0.230 T/s)t + (4.00 x 10-5 T/s5)t5.  The coil is connected to a 450 ohm resistor, and its plane is perpendicular to the magnetic field.  The resistance of the coil can be neglected.  Find the induced emf in the coil as a function of time.
#5. A coil 5.00 cm in radius, containing 250 turns, is placed in a uniform magnetic...
#5. A coil 5.00 cm in radius, containing 250 turns, is placed in a uniform magnetic field that varies with time according to: B = (0.230 T/s)t + (4.00 x 10-5 T/s5)t5.  The coil is connected to a 450 ohm resistor, and its plane is perpendicular to the magnetic field.  The resistance of the coil can be neglected.  Find the induced emf in the coil as a function of time.  (20 pts.)
A 29-turn circular coil of radius 3.40 cm and resistance 1.00 Ω is placed in a...
A 29-turn circular coil of radius 3.40 cm and resistance 1.00 Ω is placed in a magnetic field directed perpendicular to the plane of the coil. The magnitude of the magnetic field varies in time according to the expression B = 0.010 0t + 0.040 0t2, where B is in teslas and t is in seconds. Calculate the induced emf in the coil at t = 4.60 s.
A 159 ‑turn circular coil of radius 3.49 cm and negligible resistance is immersed in a...
A 159 ‑turn circular coil of radius 3.49 cm and negligible resistance is immersed in a uniform magnetic field that is perpendicular to the plane of the coil. The coil is connected to a 10.9 Ω resistor to create a closed circuit. During a time interval of 0.141 s, the magnetic field strength decreases uniformly from 0.539 T to zero. Find the energy ? in millijoules that is dissipated in the resistor during this time interval.
A 173 ‑turn circular coil of radius 2.79 cm and negligible resistance is immersed in a...
A 173 ‑turn circular coil of radius 2.79 cm and negligible resistance is immersed in a uniform magnetic field that is perpendicular to the plane of the coil. The coil is connected to a 11.9 Ω resistor to create a closed circuit. During a time interval of 0.161 s, the magnetic field strength decreases uniformly from 0.673 T to zero. Find the energy, in millijoules, that is dissipated in the resistor during this time interval. energy:____________ mJ
A circular coil (d = 28 cm, N = 113 turns) is placed in a region...
A circular coil (d = 28 cm, N = 113 turns) is placed in a region of space where there is no magnetic field. Suddenly, a magnetic field is turned on and the coil is totally immersed in it. The magnetic field reaches the strength of 950 mT in 3.5 ms. Determine the voltage induced across the coil Determine the current through a 23 Ω resistor connected across the coil.
1. What is the peak emf in kV generated by a 0.214 m radius, 561-turn coil...
1. What is the peak emf in kV generated by a 0.214 m radius, 561-turn coil is rotated one-fourth of a revolution in 5.15 ms, originally having its plane perpendicular to a uniform magnetic field of 0.449 T. 2. Calculate the peak voltage of a generator that rotates its 183-turn, 0.069 m diameter coil at 3,243 rpm in a 0.924 T field.
A 37-turn circular coil of radius 4.60 cm and resistance 1.00 Ω is placed in a magnetic field directed perpendicular to...
A 37-turn circular coil of radius 4.60 cm and resistance 1.00 Ω is placed in a magnetic field directed perpendicular to the plane of the coil. The magnitude of the magnetic field varies in time according to the expression B = 0.010 0t + 0.040 0t2, where B is in teslas and t is in seconds. Calculate the induced emf in the coil at t = 4.20 s.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT