Question

When an alpha particle collides elastically with a nucleus the nucleus recoils. A 5.00-MeV alpha particle...

When an alpha particle collides elastically with a nucleus the nucleus recoils. A 5.00-MeV alpha particle has a head-on elastic collision with a gold nucleus, initially at rest. (a) What is the distance of closest approach of the alpha particle to the recoiling nucleus? (Hint: At closest approach the alpha particle and the recoiling nucleus are moving with the same velocity in the laboratory reference frame.) (b) How does this compare with the result one gets if, as in Example 2, we assume the target nucleus to remain at rest?

ans: (a) 46.4 fm. (b) 45.5 fm

Homework Answers

Answer #1

Answer question

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
When an alpha particle collides elastically with a nucleus, the nucleus recoils. Suppose a 4.35 MeV...
When an alpha particle collides elastically with a nucleus, the nucleus recoils. Suppose a 4.35 MeV alpha particle has a head-on elastic collision with a gold nucleus that is initially at rest. What is the kinetic energy of (a) the recoiling nucleus and (b) the rebounding alpha particle? The gold nucleus has a mass of 197 u and the alpha has a mass of 4.0 u.
An alpha particle with a kinetic energy of 6.00 MeV makes a head-on collision with a...
An alpha particle with a kinetic energy of 6.00 MeV makes a head-on collision with a gold nucleus at rest. What is the distance of closest approach of the two particles? (Assume that the gold nucleus remains stationary and that it may be treated as a point charge. A gold nucleus has 79 protons, and an alpha particle is a helium nucleus consisting of two protons and two neutrons. The mass of an alpha particle is 6.64424 x 10-27 kg....
In Rutherford's scattering experiments, alpha particles (charge = +2e) were fired at a gold foil. Consider...
In Rutherford's scattering experiments, alpha particles (charge = +2e) were fired at a gold foil. Consider an alpha particle with an initial kinetic energy K heading directly for the nucleus of a gold atom (charge =+79e). The alpha particle will come to rest when all its initial kinetic energy has been converted to electrical potential energy. Find the distance of closest approach between the alpha particle and the gold nucleus for the case K = 3.0 MeV . (answer in...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT