Question

An electron moves with a speed v = 10-3c inside a one-dimensional box (V = 0)...

An electron moves with a speed v = 10-3c inside a one-dimensional box (V = 0) of length 4.85 nm. The potential is infinite elsewhere. The particle may not escape the box. What approximate quantum number does the electron have?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A particle of mass m moves in a one-dimensional box of length L, with boundaries at...
A particle of mass m moves in a one-dimensional box of length L, with boundaries at x = 0 nm and x = 5 nm. Thus, V (x) = 0 for 0 ≤ x ≤ 5 nm, and V (x) = ∞ elsewhere. a) Can light excite a particle from its ground state to the fourth excited state? Mathematically support your answer. b) If the optical transition in (a) is possible, what is the required wavelength of light that generates...
An electron confined in a one-dimensional box is observed, at different times, to have energies of...
An electron confined in a one-dimensional box is observed, at different times, to have energies of 32 eV , 72 eV , and 128 eV . What is the length of the box? Hint: Assume that the quantum numbers of these energy levels are less than 10. Answer should be in nm
The wave function of a particle in a one-dimensional box of length L is ψ(x) =...
The wave function of a particle in a one-dimensional box of length L is ψ(x) = A cos (πx/L). Find the probability function for ψ. Find P(0.1L < x < 0.3L) Suppose the length of the box was 0.6 nm and the particle was an electron. Find the uncertainty in the speed of the particle.
4. Consider a free electron bound within a 2-dimensional infinite potential well defined by V =...
4. Consider a free electron bound within a 2-dimensional infinite potential well defined by V = 0 for 0 < x < 25 Å, 0 < y < 50 Å, and V = ∞ elsewhere. Determine the expression for the allowed electron energies.
We have an electron trapped in a one dimensional box, and is excited to the 2nd...
We have an electron trapped in a one dimensional box, and is excited to the 2nd (n = 2) state. What will be the length of the box if our electron has the same energy as a violet photon (404 nm)?
4. An electron is trapped in a one-dimensional infinite potential well of width L. (1) Find...
4. An electron is trapped in a one-dimensional infinite potential well of width L. (1) Find wavefunction ψn(x) under assumption that the wavefunction in 1 dimensional box whose potential energy U is 0 (0≤ z ≤L) is normalized (2) Find eighenvalue En of electron (3) If the yellow light (580 nm) can excite the elctron from n=1 to n=2 state, what is the width (L) of petential well?
An electron confined to a one-dimensional box has energy levels given by the equation En=n2h2/8mL2 where...
An electron confined to a one-dimensional box has energy levels given by the equation En=n2h2/8mL2 where n is a quantum number with possible values of 1,2,3,…,m is the mass of the particle, and L is the length of the box.    Calculate the energies of the n=1,n=2, and n=3 levels for an electron in a box with a length of 180 pm . Enter your answers separated by a comma. Calculate the wavelength of light required to make a transition...
A one-dimensional impenetrable box of length a contains an electron that suffers a small perturbation and...
A one-dimensional impenetrable box of length a contains an electron that suffers a small perturbation and emilts a photon frequency v=3E1/h where E1 energy of the grounfd state. From this would it be correct to conclude that the initial state of the electron is the n = 2 box state? why or why not?
II(20pts). Short Problems a) The lowest energy of a particle in an infinite one-dimensional potential well...
II(20pts). Short Problems a) The lowest energy of a particle in an infinite one-dimensional potential well is 4.0 eV. If the width of the well is doubled, what is its lowest energy? b) Find the distance of closest approach of a 16.0-Mev alpha particle incident on a gold foil. c) The transition from the first excited state to the ground state in potassium results in the emission of a photon with  = 310 nm. If the potassium vapor is...
When an electron trapped in a one-dimensional box transitions from its n = 2 state to...
When an electron trapped in a one-dimensional box transitions from its n = 2 state to its n = 1 state, a photon with a wavelength of 636.4 nm is emitted. What is the length of the box (in nm)? What If? If electrons in the box also occupied the n = 3 state, what other wavelengths of light (in nm) could possibly be emitted? Enter the shorter wavelength first. shorter wavelength  nmlonger wavelength  nm