Question

A 48.5-kg skater is traveling due east at a speed of 2.65 m/s. A 72.0-kg skater...

A 48.5-kg skater is traveling due east at a speed of 2.65 m/s. A 72.0-kg skater is moving due south at a speed of 7.45 m/s. They collide and hold on to each other after the collision, managing to move off at an angle ? south of east, with a speed of vf. Find the following. (a) the angle ? ° (b) the speed vf, assuming that friction can be ignored

Homework Answers

Answer #1

(theta = A)

Using Momentum conservation In x-direction

Pix = Pfx

m1*v1x + m2*v2x = M*Vx

m1 = 48.5 kg & m2 = 72 kg

v1x = v1 = 2.65 m/sec

v2x = 0 m/sec

Vx = V*cos A

M = 48.5 + 72 = 120.5

48.5*2.65 + 0 = 120.5*V*cos A

V*cos A = 128.525/120.5 = 1.07 m/sec

In y-direction

m1*v1y + m2*v2y = M*Vy

v1y = 0 m/sec

v2y = -7.45 m/sec

Vy = -V*sin A

0 + 72*(-7.45) = -120.5*V*sin A

V*sin A = 72*7.45/120.5

V*sin A = 4.45

Also we have

V*cos A = 1.07

divide both equation

tan A = 4.45/1.07

A = arctan (4.45/1.07) = 76.48 deg south of east

Part B

square and add both equation

V^2 = 1.07^2 + 4.45^2

V = sqrt (1.07^2 + 4.45^2)

V = 4.58 m/sec

Please Upvote.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 48.5-kg skater is traveling due east at a speed of 2.55 m/s. A 71.0-kg skater...
A 48.5-kg skater is traveling due east at a speed of 2.55 m/s. A 71.0-kg skater is moving due south at a speed of 7.30 m/s. They collide and hold on to each other after the collision, managing to move off at an angle θ south of east, with a speed of vf. Find the following (a) the angle θ ° (b) the speed vf, assuming that friction can be ignored m/s
A 52.0-kg skater is traveling due east at a speed of 3.30 m/s. A 69.5-kg skater...
A 52.0-kg skater is traveling due east at a speed of 3.30 m/s. A 69.5-kg skater is moving due south at a speed of 7.45 m/s. They collide and hold on to each other after the collision, managing to move off at an angle ? south of east, with a speed of vf. Find the following. (a) the angle ? ° (b) the speed vf, assuming that friction can be ignored m/s
A 54.0-kg skater is traveling due east at a speed of 2.60 m/s. A 74.5-kg skater...
A 54.0-kg skater is traveling due east at a speed of 2.60 m/s. A 74.5-kg skater is moving due south at a speed of 6.65 m/s. They collide and hold on to each other after the collision, managing to move off at an angle θ south of east, with a speed of vf. Find the following. (a) the angle θ =________ ° (b) the speed vf, assuming that friction can be ignored =_____________ m/s
A 62 kg ice skater moving at 3.2 m/s collides with a second stationary skater with...
A 62 kg ice skater moving at 3.2 m/s collides with a second stationary skater with mass 65 kg. The skaters cling together after the collision and move without friction. Compute their speed after the collision.
07.2 Skater A, with mass 80 kg and initial speed 9.0 m/s, runs into stationary Skater...
07.2 Skater A, with mass 80 kg and initial speed 9.0 m/s, runs into stationary Skater B, mass 65 kg. After the collision, Skater A moves at an angle of 55.0o from her original direction and Skater B moves at an angle of 10o from Skater A’s original direction. Both skaters move on the frictionless, horizontal surface of the rink. (a) What are the final speeds of Skater A and Skater B. (b) Is kinetic energy conserved? If not, what...
Billiard ball A of mass mA = 0.130 kg moving with speed vA = 2.65 m/s...
Billiard ball A of mass mA = 0.130 kg moving with speed vA = 2.65 m/s strikes ball B, initially at rest, of mass mB = 0.140 kg . As a result of the collision, ball A is deflected off at an angle of 30.5 ∘ with a speed vA1 = 2.35 m/s . C.) Solve for the speed, vB1, of ball B. Do not assume the collision is elastic. D.) Solve for the angle, θB, of ball B. Do...
A 900-kg car traveling east at 15.0 m/s collides with a 750-kg car traveling north at...
A 900-kg car traveling east at 15.0 m/s collides with a 750-kg car traveling north at 20.0 m/s. The cars stick together. What is the speed of the wreckage just after the collision? In what direction does the wreckage move just after the collision?
Two 200 kg cars approach an intersection. One car is traveling east at 18 m/s. The...
Two 200 kg cars approach an intersection. One car is traveling east at 18 m/s. The second car is traveling north at 24 m/s. They both collide and violently stick together. Immediately after the collision they are moving
A 2,500-kg car moving east at 10.0 m/s collides with a 3,000-kg car moving north. The...
A 2,500-kg car moving east at 10.0 m/s collides with a 3,000-kg car moving north. The cars stick together and move as a unit after the collision, at an angle of 35.0 degrees north of east and at a speed of 5.55 m/s. Find the speed of the 3,000-kg car before the collision. __________ m/s north
A 940 kg car traveling east at 12.3 m/s collides with a 670 kg car traveling...
A 940 kg car traveling east at 12.3 m/s collides with a 670 kg car traveling north at 20.3 m/s . The cars stick together. Assume that any other unbalanced forces are negligible. A) In what direction does the wreckage move just after the collision? B) What is the speed of the wreckage just after the collision?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT