Question

I need a solution of this structural dynamics problem? A mass with mass 1 is attached...

I need a solution of this structural dynamics problem?

A mass with mass 1 is attached to a spring with spring constant 64 and a dashpot giving a damping

16. The mass is set in motion with initial position 7 and initial velocity -10. (All values are given

in consistent units.) Find the position function x(t) and plot this from t=0 to 10. What kind of

motion is this?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Mass m=1 is attached to a spring with constant k = 4 and dashpot constant c=2....
Mass m=1 is attached to a spring with constant k = 4 and dashpot constant c=2. Suppose the spring is at the equilibrium position resting at time t=0. At t=0 the mass is struck with a hammer with an impulse of 1. Determine the motion of the mass over time (compute for x(t)).
A 1/2 kg mass is attached to a spring with 20 N/m. The damping constant for...
A 1/2 kg mass is attached to a spring with 20 N/m. The damping constant for the system is 6 N-sec/m. If the mass is moved 12/5 m to the left of equilibrium and given an initial rightward velocity of 62/5 m/sec, determine the equation of motion of the mass and give its damping factor, quasiperiod, and quasifrequency. What is the equation of motion? y(t)= The damping factor is: The quasiperiod is: The quasifrequency is:
A 1/4​-kg mass is attached to a spring with stiffness 52 N/m. The damping constant for...
A 1/4​-kg mass is attached to a spring with stiffness 52 N/m. The damping constant for the system is 6 ​N-sec/m. If the mass is moved 3/4 m to the left of equilibrium and given an initial rightward velocity of 1 ​m/sec, determine the equation of motion of the mass y(t) = and give its damping​ factor, quasiperiod, and quasifrequency.
A 0.5-kg mass is attached to a spring with spring constant 2.5 N/m. The spring experiences...
A 0.5-kg mass is attached to a spring with spring constant 2.5 N/m. The spring experiences friction, which acts as a force opposite and proportional to the velocity, with magnitude 2 N for every m/s of velocity. The spring is stretched 1 meter and then released. (a) Find a formula for the position of the mass as a function of time. (b) How much time does it take the mass to complete one oscillation (to pass the equilibrium point, bounce...
A mass weighing 16 pounds is attached to a spring and stretches it 4 feet. You...
A mass weighing 16 pounds is attached to a spring and stretches it 4 feet. You release the mass from rest one foot below equilibrium. (a) What is the initial value problem that models this scenario? (b) What is the equation of motion? (c) What is the period of motion? (d) Assume now that there is a damping force equivalent to 6 times the velocity. Repeat parts (a) and (b). (e) Now assume there is still the damping force, but...
A 1-kilogram mass is attached to a spring whose constant is 16 N / m, and...
A 1-kilogram mass is attached to a spring whose constant is 16 N / m, and then the entire system is immersed in a liquid that imparts a damping force equal to 10 times the instantaneous speed. Determine the equations of motion if the mass is initially released from a point 1 meter below the equilibrium position. differential equations
A 1-kilogram mass is attached to a spring whose constant is 18 N/m, and the entire...
A 1-kilogram mass is attached to a spring whose constant is 18 N/m, and the entire system is then submerged in a liquid that imparts a damping force numerically equal to 11 times the instantaneous velocity. Determine the equations of motion if the following is true. (a) the mass is initially released from rest from a point 1 meter below the equilibrium position x(t) = m (b) the mass is initially released from a point 1 meter below the equilibrium...
MASS SPRING SYSTEMS problem (Differential Equations) A mass weighing 6 pounds, attached to the end of...
MASS SPRING SYSTEMS problem (Differential Equations) A mass weighing 6 pounds, attached to the end of a spring, stretches it 6 inches. If the weight is released from rest at a point 4 inches below the equilibrium position, the system is immersed in a liquid that offers a damping force numerically equal to 3 times the instantaneous velocity, solve: a. Deduce the differential equation that models the mass-spring system. b. Calculate the displacements of the mass ? (?) at all...
MASS SPRING SYSTEMS problem (Differential Equations) A mass weighing 6 pounds, attached to the end of...
MASS SPRING SYSTEMS problem (Differential Equations) A mass weighing 6 pounds, attached to the end of a spring, stretches it 6 inches. If the weight is released from rest at a point 4 inches below the equilibrium position, and the entire system is immersed in a liquid that imparts a damping force numerically equal to 3 times the instantaneous velocity, solve: a. Deduce the differential equation that models the mass-spring system. b. Calculate the displacements of the mass ? (?)...
. Write and solve a differential equation that models the motion of a spring whose mass...
. Write and solve a differential equation that models the motion of a spring whose mass is 2a, spring constant b, and damping a, where the numbers a is 3, b is 6. Assume that the initial position is y = 1 and initial velocity is y 0 = −1. Write your solution as a single, phase-shifted cosine function.